Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane Aug 2022

Coupled Oscillators: Protein And Acoustics, Angelique N. Mcfarlane

Theses

This work encompassed three different vibrational energy transfer studies of coupled resonators (metal, topological, and microtubule comparison) inspired by the lattices of microtubules from regular and cancerous cells. COMSOL Multiphysics 5.4 was utilized to design the experiment. The simulation starts with an acoustic pressure study to examine the vibrational modes present in coupled cylinders, representing α-, β-tubulin heterodimers. The Metal Study consisted of 3 models (monomer, dimer, and trimer) to choose the correct height (40 mm) and mode (Mode 1) for study. The Topological Study was run to predict and understand how the lattice structure changes over a parametric sweep …


Inverse Methods For Sound Speed Estimation In The Ocean, Tao Lin May 2014

Inverse Methods For Sound Speed Estimation In The Ocean, Tao Lin

Dissertations

This dissertation presents theoretical and computational approaches for estimating sound-speed in the ocean under different conditions. The first part of the dissertation discusses a fast approach for solving the inverse problem of estimating sediment sound-speed based on the Deift-Trubowitz trace formula. Under certain assumptions, this algorithm can recover the sound speed profile in the seabed using pressure field measurements in the water column at low frequencies. The inversion algorithm requires solving a non-linear integral equation. In the past, Stickler and Zhou employed a first order Born approximation for solving the integral equation. This work introduces two new methods. The first …


Perturbed Spherical Objects In Acoustic And Fluid Flow Fields, Manmeet Kaur Jan 2010

Perturbed Spherical Objects In Acoustic And Fluid Flow Fields, Manmeet Kaur

Dissertations

In this study, the time averaged acoustic radiation force and drag on a small, nearly spherical object suspended freely in a stationary sound wave field in a compressible, low viscosity fluid is to be calculated. This problem has been solved for a spherical object, and it has many important engineering applications related to segregation and separation processes for particles in fluids such as water. Small but significant errors have occurred in the predicted behavior of the particles using the existing approximate solutions based on perfect spheres. The classical approach has been extended in this research to objects that deviate slightly …


Asymptotic Methods In Applied Waveguide Problems, Helen Martynov Aug 2001

Asymptotic Methods In Applied Waveguide Problems, Helen Martynov

Dissertations

Some of the most challenging problems in acoustics and electromagnetics involve the study of scattered fields in waveguides caused by targets of elaborate shape. The complexity of the resulting scattered field depends on the geometry of the scatterer, and exact solutions exist only for the simple geometries.

The asymptotic methods developed in this dissertation give the approximate solutions for the scattered fields in two practically important geometries: an object placed inside a stratified waveguide, and a waveguide with multiple abrupt width transitions. The solutions for these geometries are obtained by approximating the field near the target or junction by the …