Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Numerical Simulations Of Thin Viscoelastic Films, Valeria Barra May 2018

Numerical Simulations Of Thin Viscoelastic Films, Valeria Barra

Dissertations

This dissertation is developed in the field of Computational Fluid Dynamics (CFD) and it focuses on numerical simulations of the dynamics of thin viscoelastic films in different settings. The first part of this dissertation presents a novel computational investigation of thin viscoelastic films and drops, that are subject to the van der Waals interaction force, in two spatial dimensions. The liquid films are deposited on a flat solid substrate, that can have a zero or nonzero inclination with respect to the base. The equation that governs the interfacial dynamics of the thin films and drops is obtained within the long-wave …


Instabilities In Nematic Liquid Crystal Films And Droplets, Michael-Angelo Y.-H. Lam May 2018

Instabilities In Nematic Liquid Crystal Films And Droplets, Michael-Angelo Y.-H. Lam

Dissertations

The dynamics of thin films of nematic liquid crystal (NLC) are studied. Nematic liquid crystals are a type of non-Newtonian fluid with anisotropic viscous effects (due to the shape of the molecules) and elasticity effects (due to interacting electrical dipole moments). Exploiting the small aspect ratio in the geometry of interest, a fourth-order non-linear partial differential equation is used to model the free surface of the thin films. Particular attention is paid to the interplay between the bulk elasticity and the preferred orientation (boundary condition) of NLC molecules at the two interfaces: the substrate and the free surface. This work …


Instabilities Of Volatile Films And Drops, Nebojsa Murisic May 2008

Instabilities Of Volatile Films And Drops, Nebojsa Murisic

Dissertations

We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname “octopi” due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DJW)-JPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact …


Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons Jan 1994

Photoluminescence Study Of Gallium Arsenide, Aluminum Gallium Arsenide, And Gallium Antimonide Thin Films Grown By Metalorganic Chemical Vapor Deposition, John Mark Koons

Theses

The photoluminescence produced by four MOCVD grown epitaxial thin film samples was studied to give insight into sample quality. The four samples under this study were GaAs on a GaAs substrate, Al.25Ga.75As on a GaAs substrate, Al.30Ga.7OAs on a GaAs substrate, and GaSb on a GaSb substrate. Excitation was achieved through the use of the 514.0 nm line of an argon ion laser, and sample cooling was attained by use of a cryostat cooler using helium gas to attain a low temperature limit of 10°K. The GaAs and Al.30Ga.7O …


Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du Jan 1992

Characterization Of Low Pressure Chemical Vapor Deposited Silicon Dioxide Thin Films, Xue Du

Theses

LPCVD deposited amorphous silicon dioxide SiO2 thin films from a new chemical vapor source, diethylsilane (DES), were characterized. This work is focused on evaluation of SiO2 films prepared by varies deposition temperatures and flow rates series.

SiO2 thin films were evaluated for density, porosity, and refractive index. Techniques for evaluation of the above mentioned parameters for this work included the use of infrared absorption spectroscopy, preferential etch procedures, optical measurement of refractive index and thickness, and thermal annealing of CVD films. The densification in vacuum ambient has been carried out at the temperature of 600 °, 750 …


Low Pressure Chemical Vapor Deposition (Lpcvd) Of Silicon Carbide From Diethylsilane, Yi-Tong Shi Aug 1991

Low Pressure Chemical Vapor Deposition (Lpcvd) Of Silicon Carbide From Diethylsilane, Yi-Tong Shi

Theses

The depositions of amorphous and cubic-crystal SiC from a new chemical vapor deposition source, diethylsilane(DES), have been studied. Amorphous SiC thin films and crystalline cubic-SiC materials have been deposited on silicon wafers at temperature lower and higher than 850C, respectively. The activation energy and a reaction mechanism involving the production and subsequent desorption of diethylsilene has been suggested, which explains the observed deposition dependency with the temperature and reactor pressure. A model based on the polymerization of DES is offered and the deposition rate is found to be the result of a large number of simultaneously occuring deposition processes for …