Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Long-Range Interactions Of Hydrogen Atoms In Excited States. Ii. Hyperfine-Resolved 2s-2s Systems, Ulrich D. Jentschura, Vincent Debierre, Chandra Mani Adhikari, Arthur N. Matveev, Nikolai N. Kolachevsky Feb 2017

Long-Range Interactions Of Hydrogen Atoms In Excited States. Ii. Hyperfine-Resolved 2s-2s Systems, Ulrich D. Jentschura, Vincent Debierre, Chandra Mani Adhikari, Arthur N. Matveev, Nikolai N. Kolachevsky

Physics Faculty Research & Creative Works

The interaction of two excited hydrogen atoms in metastable states constitutes a theoretically interesting problem because of the quasidegenerate 2P1/2 levels that are removed from the 2S states only by the Lamb shift. The total Hamiltonian of the system is composed of the van der Waals Hamiltonian, the Lamb shift, and the hyperfine effects. The van der Waals shift becomes commensurate with the 2S-2P3/2 fine-structure splitting only for close approach (R < 100a0, where a0 is the Bohr radius) and one may thus restrict the discussion to the levels with n = 2 and J = 1/2 …


Nonresonant Two-Photon Transitions In Length And Velocity Gauges, Ulrich D. Jentschura Aug 2016

Nonresonant Two-Photon Transitions In Length And Velocity Gauges, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of …


Dirac Hamiltonian And Reissner-Nordström Metric: Coulomb Interaction In Curved Space-Time, J. H. Noble, Ulrich D. Jentschura Mar 2016

Dirac Hamiltonian And Reissner-Nordström Metric: Coulomb Interaction In Curved Space-Time, J. H. Noble, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG, where α is the fine-structure constant and …


Vibrational Energy Levels Of The Simplest Criegee Intermediate (Ch₂Oo) From Full-Dimensional Lanczos, Mctdh, And Multimode Calculations, Hua-Gen Yu, Steve Alexandre Ndengué, Jun Li, Richard Dawes, Hua Guo Aug 2015

Vibrational Energy Levels Of The Simplest Criegee Intermediate (Ch₂Oo) From Full-Dimensional Lanczos, Mctdh, And Multimode Calculations, Hua-Gen Yu, Steve Alexandre Ndengué, Jun Li, Richard Dawes, Hua Guo

Chemistry Faculty Research & Creative Works

Accurate vibrational energy levels of the simplest Criegee intermediate (CH2OO) were determined on a recently developed ab initio based nine-dimensional potential energy surface using three quantum mechanical methods. the first is the iterative Lanczos method using a conventional basis expansion with an exact Hamiltonian. the second and more efficient method is the multi-configurational time-dependent Hartree (MCTDH) method in which the potential energy surface is refit to conform to the sums-of-products requirement of MCTDH. Finally, the energy levels were computed with a vibrational self-consistent field/virtual configuration interaction method in MULTIMODE. the low-lying levels obtained from the three methods are …


A Mössbauer Spectral Study Of The Gdco₄₋ₓfeₓb Compounds, Fernande Grandjean, Raphäel P. Hermann, Eustachy S. Popiel, Gary J. Long Jan 2007

A Mössbauer Spectral Study Of The Gdco₄₋ₓfeₓb Compounds, Fernande Grandjean, Raphäel P. Hermann, Eustachy S. Popiel, Gary J. Long

Chemistry Faculty Research & Creative Works

The iron-57 Mössbauer spectra of the GdCo4-xFexB compounds, where x is 0.10, 0.15, 0.20, 0.25, 1, 2, 2.5, and 2.6, have been measured at room temperature and reveal relatively small iron hyperfine fields of approximately 12-18 T, relatively large quadrupole interactions of approximately +0.9 and -1 mm/s, and three very different types of spectra for x=0.10 and 0.15, x=0.25, 1, and 2, and x=2.5 and 2.6. The differences result from both the different easy magnetization directions in these compounds and the different cobalt and/or iron occupancies of the crystallographic 2c and 6i sites. The spectra have …


How To Choose One-Dimensional Basis Functions So That A Very Efficient Multidimensional Basis May Be Extracted From A Direct Product Of The One-Dimensional Functions: Energy Levels Of Coupled Systems With As Many As 16 Coordinates, Richard Dawes, Tucker Carrington Jr. Apr 2005

How To Choose One-Dimensional Basis Functions So That A Very Efficient Multidimensional Basis May Be Extracted From A Direct Product Of The One-Dimensional Functions: Energy Levels Of Coupled Systems With As Many As 16 Coordinates, Richard Dawes, Tucker Carrington Jr.

Chemistry Faculty Research & Creative Works

In this paper we propose a scheme for choosing basis functions for quantum dynamics calculations. Direct product bases are frequently used. The number of direct product functions required to converge a spectrum, compute a rate constant, etc., is so large that direct product calculations are impossible for molecules or reacting systems with more than four atoms. It is common to extract a smaller working basis from a huge direct product basis by removing some of the product functions. We advocate a build and prune strategy of this type. the one-dimensional (1D) functions from which we build the direct product basis …


Nonrelativistic Qed Approach To The Bound-Electron G Factor, Krzysztof Pachucki, Ulrich D. Jentschura, Vladimir A. Yerokhin Oct 2004

Nonrelativistic Qed Approach To The Bound-Electron G Factor, Krzysztof Pachucki, Ulrich D. Jentschura, Vladimir A. Yerokhin

Physics Faculty Research & Creative Works

Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order α ( Z α )4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order α2 ( Z α )4 ln [ ( Z α )- 2 ] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for …


Exotic Versus Conventional Scaling And Universality In A Disordered Bilayer Quantum Heisenberg Antiferromagnet, Rastko Sknepnek, Thomas Vojta, Matthias Vojta Aug 2004

Exotic Versus Conventional Scaling And Universality In A Disordered Bilayer Quantum Heisenberg Antiferromagnet, Rastko Sknepnek, Thomas Vojta, Matthias Vojta

Physics Faculty Research & Creative Works

We present Monte Carlo simulations of a two-dimensional bilayer quantum Heisenberg antiferromagnet with random dimer dilution. In contrast with exotic scaling scenarios found in other random quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed point with power-law scaling. After accounting for corrections to scaling, with a leading irrelevant exponent of ω ≈ 0.48, we find universal critical exponents z = 1.310(6) and ν = 1.16(3). We discuss the consequences of these findings and suggest new experiments.


Broadening Of A Nonequilibrium Phase Transition By Extended Structural Defects, Thomas Vojta Aug 2004

Broadening Of A Nonequilibrium Phase Transition By Extended Structural Defects, Thomas Vojta

Physics Faculty Research & Creative Works

We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed percolation universality class. We show that these impurities have a dramatic effect: they completely destroy the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can undergo the phase transition independently from the bulk system. We use extremal statistics to determine the stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by computer simulations.


Protonium Formation In The P̅-H Collision At Low Energies By A Diabatic Approach, M. Hesse, Anh-Thu Le, C. D. Lin May 2004

Protonium Formation In The P̅-H Collision At Low Energies By A Diabatic Approach, M. Hesse, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We present a diabatization technique in combination with the recently developed hyperspherical close coupling (HSCC) method. In contrast to the strict diabatization, our simple diabatization procedure transforms only sharp avoided crossings in the adiabatic hyperspherical potential curves into real crossings. With this approach, the weak collision channels can be removed from the close-coupling calculations. This method is used to study the antiproton-hydrogen collision at low energies. In the case of a scaled down (anti)proton mass, we show that a 10-channel calculation is enough to obtain converged cross sections at low energies. The results also indicate that protonium formation occurs mostly …


Self-Energy Correction To The Two-Photon Decay Width In Hydrogenlike Atoms, Ulrich D. Jentschura May 2004

Self-Energy Correction To The Two-Photon Decay Width In Hydrogenlike Atoms, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We investigate the guage invariance of the leading logarithmic radiative correction to the two-photon decay width in hydrogenlike atoms, was investigated. The effective treatment of the correction using a Lamb-shift led to the equivalent results in both the length and velocity gages. The relevant radiative corrections were found to be related to the energies that entered into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation condition, that holds between two photons. The results show that the dominant radiative correction to the 2S two-photon decay width is about -2.020 536(α/π)(Zα)2 1n[(Zα)-2] …


Lamb Shift Of Laser-Dressed Atomic States, Ulrich D. Jentschura, Jorg Evers, Martin K. Haas, Christoph H. Keitel Dec 2003

Lamb Shift Of Laser-Dressed Atomic States, Ulrich D. Jentschura, Jorg Evers, Martin K. Haas, Christoph H. Keitel

Physics Faculty Research & Creative Works

We discuss radiative corrections to an atomic two-level system subject to an intense driving laser field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic bare states which is usually observed in spectroscopic experiments. In the final part, we propose an experimental scheme to measure these corrections based on the incoherent resonance fluorescence spectrum of the driven atom.


Two-Loop Bethe-Logarithm Correction In Hydrogenlike Atoms, Krzysztof Pachucki, Ulrich D. Jentschura Sep 2003

Two-Loop Bethe-Logarithm Correction In Hydrogenlike Atoms, Krzysztof Pachucki, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We calculate the two-loop Bethe logarithm correction to atomic energy levels in hydrogenlike systems. The two-loop Bethe logarithm is a low-energy quantum electrodynamic (QED) effect involving multiple summations over virtual excited atomic states. Although much smaller in absolute magnitude than the well-known one-loop Bethe logarithm, the two-loop analog is quite significant when compared to the current experimental accuracy of the 1 S – 2 S transition: It contributes - 8.19 and - 0.84 k H z for the 1 S and the 2 S state, respectively. The two-loop Bethe logarithm has been the largest unknown correction to the hydrogen Lamb …


Role Of The Ground State In Electron-Atom Double Ionization, Stephenie J. Jones, Don H. Madison Aug 2003

Role Of The Ground State In Electron-Atom Double Ionization, Stephenie J. Jones, Don H. Madison

Physics Faculty Research & Creative Works

Recently, absolute measurements have been reported for double ionization of helium by 5.6 keV electron-impact. At this high energy, one would think that the first Born approximation for the interaction of the projectile with the atom would be valid. However, on the basis of a lowest-order implementation of a Faddeev-type approach, Berakdar concluded that the approximation was not valid. Here we argue that (i) it is valid at this energy and (ii) the previous discrepancy between calculations in the first Born approximation and the overall magnitude of the measurements was due to a poor description of the ground state.


Disorder-Induced Rounding Of Certain Quantum Phase Transitions, Thomas Vojta Mar 2003

Disorder-Induced Rounding Of Certain Quantum Phase Transitions, Thomas Vojta

Physics Faculty Research & Creative Works

We study the influence of quenched disorder on quantum phase transitions in systems with overdamped dynamics. For Ising order-parameter symmetry disorder destroys the sharp phase transition by rounding because a static order parameter can develop on rare spatial regions. This leads to an exponential dependence of the order parameter on the coupling constant. At finite temperatures the static order on the rare regions is destroyed. This restores the phase transition and leads to a double exponential relation between critical temperature and coupling strength. We discuss the behavior based on Lifshitz-tail arguments and illustrate the results by simulations of a model …


Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich Apr 2002

Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Low-energy electron emission spectra are studied in collisions of 3.6 MeV/amu Au53+ ions with neon and argon atoms for well-defined degrees of target ionization. We calculate doubly differential cross sections as functions of the recoil-ion charge state in the continuum-distorted-wave with eikonal initial-state approximation using a binomial analysis of the total and differential ionization probabilities, and compare them with the present and with previously published experimental data. Very good agreement is found for the single-ionization spectra and for double ionization of neon, while some discrepancies are observed in the spectra for double and triple ionization of argon.


Electron-Impact Excitation From The (4p⁵5s) Metastable States Of Krypton, Arati K. Dasgupta, Klaus Bartschat, D. Vaid, Alexei N. Grum-Grzhimailo, Don H. Madison, Milan Blaha, John L. Giuliani Apr 2002

Electron-Impact Excitation From The (4p⁵5s) Metastable States Of Krypton, Arati K. Dasgupta, Klaus Bartschat, D. Vaid, Alexei N. Grum-Grzhimailo, Don H. Madison, Milan Blaha, John L. Giuliani

Physics Faculty Research & Creative Works

Theoretical results from multistate semirelativistic Breit-Pauli R-matrix calculations and two first-order distorted-wave calculations are presented for electron-impact excitation of krypton from the (4p55s) J = 0,2 metastable states to the (4p55s) and (4p55p) manifolds. Except for a few cases, in which the method to account for relativistic effects becomes surprisingly critical, fair overall agreement between the predictions from the various theoretical models is achieved for intermediate and high energies. However, significant discrepancies remain with the few available experimental data.


Electron-Impact Excitation To The 4p⁵5s And 4p⁵5p Levels Of Kr | Using Different Distorted-Wave And Close-Coupling Methods, Arati K. Dasgupta, Klaus Bartschat, D. Vaid, Alexei N. Grum-Grzhimailo, Don H. Madison, Milan Blaha, John L. Giuliani Nov 2001

Electron-Impact Excitation To The 4p⁵5s And 4p⁵5p Levels Of Kr | Using Different Distorted-Wave And Close-Coupling Methods, Arati K. Dasgupta, Klaus Bartschat, D. Vaid, Alexei N. Grum-Grzhimailo, Don H. Madison, Milan Blaha, John L. Giuliani

Physics Faculty Research & Creative Works

Electron-impact excitation of the 4p55s and 4p55p levels of Kr I has been investigated in detail by calculating cross sections using distorted-wave and close-coupling approaches. The results are presented from the excitation thresholds up to 50 eV incident energy. They are contrasted among the different calculations and compared with other theoretical predictions and experimental data. Significant disagreement is found with many of the recent experimental data of Chilton et al. [Phys. Rev. A 62, 032714 (2000)].