Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2017

Carbon

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Air-Oxidation Of Phenolic Resin Aerogels: Backbone Reorganization, Formation Of Ring-Fused Pyrylium Cations, And The Effect On Microporous Carbons With Enhanced Surface Areas, Hojat Majedi Far, Suraj Donthula, Tahereh Taghvaee, Adnan Malik Saeed, Zachary Garr, Chariklia Sotiriou-Leventis, Nicholas Leventis Nov 2017

Air-Oxidation Of Phenolic Resin Aerogels: Backbone Reorganization, Formation Of Ring-Fused Pyrylium Cations, And The Effect On Microporous Carbons With Enhanced Surface Areas, Hojat Majedi Far, Suraj Donthula, Tahereh Taghvaee, Adnan Malik Saeed, Zachary Garr, Chariklia Sotiriou-Leventis, Nicholas Leventis

Chemistry Faculty Research & Creative Works

This paper is a thorough investigation of the chemical transformations during pyrolytic conversion of phenolic resins to carbons, and reports that all carbons obtained from main-stream phenolic resins including phloroglucinol-formaldehyde (FPOL), phloroglucinol-terephthalaldehyde (TPOL), resorcinol-formaldehyde (RF), and phenol-formaldehyde (PF) contain fused pyrylium rings and charge-compensating phenoxides. Those four phenolic resins were prepared via a fast HCl-catalyzed process as low-density nanostructured solids classified as aerogels, which, owing to their open porosity, allowed air circulation through their bulk. In that regard, the first step of this study was the air-oxidation of those phenolic resin aerogels at 240 °C. In FPOL and TPOL aerogels, …