Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Biological Sciences Faculty Research & Creative Works

Cadmium Derivative

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Nona-Arginine Facilitates Delivery Of Quantum Dots Into Cells Via Multiple Pathways, Yi Xu, Betty Revon Liu, Han Jung Lee, Katie Shannon, Jeffrey G. Winiarz, Tien-Chun Wang, Huey-Jenn Chiang, Yue-Wern Huang Sep 2010

Nona-Arginine Facilitates Delivery Of Quantum Dots Into Cells Via Multiple Pathways, Yi Xu, Betty Revon Liu, Han Jung Lee, Katie Shannon, Jeffrey G. Winiarz, Tien-Chun Wang, Huey-Jenn Chiang, Yue-Wern Huang

Biological Sciences Faculty Research & Creative Works

Semiconductor quantum dots (QDs) have recently been used to deliver and monitor biomolecules, such as drugs and proteins. However, QDs alone have a low efficiency of transport across the plasma membrane. In order to increase the efficiency, we used synthetic nona-arginine (SR9), a cell-penetrating peptide, to facilitate uptake. We found that SR9 increased the cellular uptake of QDs in a noncovalent binding manner between QDs and SR9. Further, we investigated mechanisms of QD/SR9 cellular internalization. Low temperature and metabolic inhibitors markedly inhibited the uptake of QD/SR9, indicating that internalization is an energy-dependent process. Results from both the pathway inhibitors and …