Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Wetting Properties Induced In Nano-Composite Poss-Ma Polymer Films By Atomic Layer Deposited Oxides, Kyle A. Vasquez, Anita J. Vincent-Johnson, W. Chris Hughes, Brian H. Augustine, Kyoungmi Lee, Gregory N. Parsons, Giovanna Scarel Sep 2011

Wetting Properties Induced In Nano-Composite Poss-Ma Polymer Films By Atomic Layer Deposited Oxides, Kyle A. Vasquez, Anita J. Vincent-Johnson, W. Chris Hughes, Brian H. Augustine, Kyoungmi Lee, Gregory N. Parsons, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

Due to their unique properties, nano-composite polyhedral oligomeric silsequioxane (POSS) copolymer films are attractive for various applications. Here we show that their natural hydrophobic character can become hydrophilic when the films are modified by a thin oxide layer, up to 8 nm thick, prepared using atomic layer deposition. A proper choice of the deposition temperature and thickness of the oxide layer are required to achieve this goal. Unlike other polymeric systems, a marked transition to a hydrophilic state is observed with oxide layers deposited at increasing temperatures up to the glass transition temperature (∼110 °C) of the POSS copolymer film. …


Heat Recovery Mechanism In The Excitation Of Radiative Polaritons By Broadband Infrared Radiation In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, John E. Bridstrup, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel Jan 2011

Heat Recovery Mechanism In The Excitation Of Radiative Polaritons By Broadband Infrared Radiation In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, John E. Bridstrup, Andrew E. Masters, Xiaofeng Hu, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

This work probes radiative polaritons in thin oxide layers as a mean to capture and absorb broadband infrared radiation and transform it into heat. A heat recovery mechanism, based on the Seebeck effect, is used as the tool of the investigation. Heat production challenges the current understanding which views the excitation of radiative polaritons as only accompanied by the emission of electromagnetic radiation. The heat recovery mechanism presented here can inspire the design of infrared energy harvesting devices, similar to photovoltaic cells, and other devices to convert energy from a wide range of the electromagnetic radiation spectrum using thermoelectric power …