Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Embry-Riddle Aeronautical University

2012

Activated carbon

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Optimization Of Magnetic Powdered Activated Carbon For Aqueous Hg(Ii) Removal And Magnetic Recovery, Emily K. Faulconer, Natalia Hoogesteijn Von Reitzenstein, David W. Mazyck Jan 2012

Optimization Of Magnetic Powdered Activated Carbon For Aqueous Hg(Ii) Removal And Magnetic Recovery, Emily K. Faulconer, Natalia Hoogesteijn Von Reitzenstein, David W. Mazyck

Physical Sciences - Daytona Beach

Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 mg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N2(g) headspace flow to an oxidizingtrap. Mercury adsorption was performed using spiked ultrapure water (100 mg/L Hg). Mercury concentrations …


Effects Of Activated Carbon Surface Chemistry Modification On The Adsorption Of Mercury From Aqueous Solution, Emily K. Faulconer Jan 2012

Effects Of Activated Carbon Surface Chemistry Modification On The Adsorption Of Mercury From Aqueous Solution, Emily K. Faulconer

Publications

Mercury (Hg), a naturally occurring element, is toxic and can lead to negative health impacts for humans and ecosystems. Activated carbon adsorption is effective in treating Hg-laden aqueous effluent for safe discharge. Two modifications of commercially available activated carbon were investigated: iron impregnation to allow for magnetic sorbent recapture and wet chemical oxidation to enhance aqueous Hg capture. The modified carbons were characterized by nitrogen adsorption-desorption, XRD, pHpzc, vibrating sample magnetometry, elemental analysis, and total acidity titration. The 3:1 C:Fe magnetic powdered activated carbon (MPAC) retained a high surface area of 790 m2 /g and was 95% magnetically recoverable, with …