Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage Jan 2020

Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage

Sustainability Conference

Water security is an imperative part of high-functioning societies. Currently, large populations of the globe live in water-impoverished or water-stressed areas. With climate change and growing global populations, projections show more people being impacted by issues of water shortage.

One solution to water security is the implementation of desalination, specifically with reverse osmosis systems. This presentation walks through the history, capabilities, future work, and explanations on how reverse osmosis systems work. With continued research on improving desalination, communities in both developed and developing nations around the world can work towards total water security.


Recovering From Industrial Overshoot: Thermal Removal Of Atmospheric Co2, Ted Von Hippel, Sandra Boetcher, Matthew Traum, Farshid Azadian Ph.D., William Mackunis Jan 2020

Recovering From Industrial Overshoot: Thermal Removal Of Atmospheric Co2, Ted Von Hippel, Sandra Boetcher, Matthew Traum, Farshid Azadian Ph.D., William Mackunis

Sustainability Conference

Humanity will soon overshoot a safe level of atmospheric CO2, if it hasn't done so already. Countries, industries, and the global economy need to dramatically and quickly alter their behavior and technology to avoid this dangerous overshoot, yet this appears unlikely. Direct Air Capture of CO2 represents an insurance policy for society - a way of removing excess atmospheric CO2. I will present an approach to this problem based on thermal physics that cools cubic kilometers of air to extract CO2 as it sublimates. I propose a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial …


Expected And Achievable Accuracy In Estimating Parameters Of Standing Accretion Shock Instability (Sasi) Fluctuations From Neutrinos And Gravitational Wave Oscillations, Colter Richardson, Jonathan Westhouse Oct 2018

Expected And Achievable Accuracy In Estimating Parameters Of Standing Accretion Shock Instability (Sasi) Fluctuations From Neutrinos And Gravitational Wave Oscillations, Colter Richardson, Jonathan Westhouse

Undergraduate Research Symposium - Prescott

Core collapse supernovae are one of the most interesting sources of gravitational waves. When the progenitor star is particularly massive, hydrodynamic instability called standing accretion shock instability can develop and it is characterized by deterministic oscillations in the gravitational wave signal as well as in the neutrino luminosity with frequencies of 100hz. In this talk we will review current efforts to extract physical information from the SASI components of the gravitational wave and enhance the detectability of gravitational waves with such components both using laser interferometers and neutrino detectors.


Research In Optics For Gravitational Wave Detection, Britney Biltz, Noura Ibrahim, Brennan Moore Oct 2018

Research In Optics For Gravitational Wave Detection, Britney Biltz, Noura Ibrahim, Brennan Moore

Undergraduate Research Symposium - Prescott

B.Biltz uses a horizontal “Zollner style” pendulum to monitor changes in the local gravitational field. The pendulum is attracted to the moon and the Sun and so, as the Earth turns, the pendulum’s equilibrium point shifts within a 24-hour period. This is an experiment designed to test the limits of such a pendulum. This sort of system may be useful as a method of monitoring and correcting for gravity gradient noise in future gravitational wave detectors.

N.Ibrahim characterizes thermo-optic noise in high-performance mirror coatings of the type used in Advanced LIGO. To characterize thermo-optic noise, she measures the change in …


Challenges Associated With Space Weather Analysis And Prediction, John Lanicci Nov 2014

Challenges Associated With Space Weather Analysis And Prediction, John Lanicci

Space Traffic Management Conference

The term “space weather” is typically used to describe environmental conditions in the region extending from the sun’s surface, through the interplanetary medium, to the earth’s magnetic field and upper atmosphere, with a focus on those conditions that can affect the earth, its technological systems, and population. Space weather conditions are monitored continuously by a number of agencies around the world. These agencies use both satellite- and ground-based measurements to build analyses and employ predictive models that form the basis for impacts-based products dealing with myriad users in satellite operations, the utility industry, aviation, and satellite-based communications, to name a …