Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Clemson University

Theses/Dissertations

2023

Discipline
Keyword
Publication

Articles 1 - 30 of 76

Full-Text Articles in Physical Sciences and Mathematics

Leveraging Artificial Intelligence For Team Cognition In Human-Ai Teams, Beau Schelble Dec 2023

Leveraging Artificial Intelligence For Team Cognition In Human-Ai Teams, Beau Schelble

All Dissertations

Advances in artificial intelligence (AI) technologies have enabled AI to be applied across a wide variety of new fields like cryptography, art, and data analysis. Several of these fields are social in nature, including decision-making and teaming, which introduces a new set of challenges for AI research. While each of these fields has its unique challenges, the area of human-AI teaming is beset with many that center around the expectations and abilities of AI teammates. One such challenge is understanding team cognition in these human-AI teams and AI teammates' ability to contribute towards, support, and encourage it. Team cognition is …


Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva Dec 2023

Studies On Electrochemical Hydrogen Isotope Separation, Liyanage Mayura Sankalpa Silva

All Dissertations

Graphene-integrated Proton Exchange Membrane (PEM) electrochemical cells have emerged as a novel area of scientific investigation in the realm of hydrogen isotope separation. Chemical Vapor Deposited (CVD) graphene has been especially useful due to its large-scale production capability for scaling-up purposes. The research described in this dissertation explores the role that inadvertent introduction of cations, notably ammonium and copper, during the CVD graphene transfer onto PEM substrates, such as Nafion, might play in affecting hydrogen ion transport and isotope separation in PEM electrochemical cells. An extensive review of existing literature exposed a gap concerning unintentional cation introductions during graphene transfer, …


An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern Dec 2023

An Investigation Of The Accretion Processes In T Tauri And Herbig Ae/Be Systems Using High Resolution Optical And Near-Infrared Spectroscopy, Joshua Kern

All Dissertations

Star and planet formation is intimately tied to the accretion of material from the environments in which they form. During the formation process, disks of gas and dust develop in young stellar objects through which material is facilitated to the star and forming planets. Theoretical models of these accretion processes invoke viscous spreading via hydrodynamics, as well as more complex interactions with magnetic fields be it from the stellar component or the formation environment in order to catalyze these mass flows. These accretion models predict various scenarios including magnetospheric accretion as well as supersonic accretion flows in the disk atmosphere …


Thermal Energy Storage Using High Temperature Borehole Heat Exchangers In Unconsolidated Materials, Kayla Bicknell Dec 2023

Thermal Energy Storage Using High Temperature Borehole Heat Exchangers In Unconsolidated Materials, Kayla Bicknell

All Theses

Thermal energy storage is a potential method for storing excess energy produced when supply is greater than demand. The use of the subsurface for storing thermal energy has become more recognized as a viable alternative to conventional methods of energy storage. However, high temperature borehole thermal energy storage has yet to be researched in-depth. Therefore, the goal of this project is to determine the feasibility of using the subsurface to store thermal energy at relatively high temperatures.

The focus of this work is to determine what design elements would make a borehole thermal energy storage system most effective and produce …


Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts.

Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Zero-Knowledge Reductions And Confidential Arithmetic, Marvin Jones Dec 2023

Zero-Knowledge Reductions And Confidential Arithmetic, Marvin Jones

All Dissertations

The changes in computing paradigms to shift computations to third parties have resulted in the necessity of these computations to be provable. Zero-knowledge arguments are probabilistic arguments that are used to to verify computations without secret data being leaked to the verifying party.

In this dissertation, we study zero-knowledge arguments with specific focus on reductions. Our main contributions are:

  1. Provide a thorough survey in a variety of zero-knowledge techniques and protocols.
  2. Prove various results of reductions that can be used to study interactive protocols in terms of subroutines. Additionally, we identify an issue in the analogous definition of zero-knowledge for …


Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart Dec 2023

Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart

All Dissertations

Novel modern materials are constantly being discovered as humanity seeks constantly better improvement to the optics and electronics around us, from lasers used in medical therapies to the magnets and supercomputing chips in our phones. Inorganic oxides commonly draw inspiration from naturally occurring minerals to template new discoveries through substitution of similarly behaving elements with the goal of inducing certain desired properties, such as ferroelectricity or creating the elusive quantum spin liquid. While many minerals are silicates, its periodic table neighbor germanium(IV) has a rich and under-explored crystal chemistry that could contain many new structures and magnetic materials. Another common …


New Preconditioned Conjugate Gradient Methods For Some Structured Problems In Physics, Tianqi Zhang Dec 2023

New Preconditioned Conjugate Gradient Methods For Some Structured Problems In Physics, Tianqi Zhang

All Dissertations

This dissertation concerns the development and analysis of new preconditioned conjugate gradient (PCG) algorithms for three important classes of large-scale and complex physical problems characterized by special structures. We propose several new iterative methods for solving the eigenvalue problem or energy minimization problem, which leverage the unique structures inherent in these problems while preserving the underlying physical properties. The new algorithms enable more efficient and robust large-scale modeling and simulations in many areas, including condensed matter physics, optical properties of materials, stabilities of dynamical systems arising from control problems, and many more. Some methods are expected to be applicable to …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein Dec 2023

Atomistic And Mesoscale Modeling Of Microstructure Development During Solid-State Sintering, Omar Marwan Isa Hussein

All Dissertations

Interfaces are ubiquitous in materials systems, and they influence the processing and properties of nearly all engineering and functional materials. Examples include grain boundaries (GBs) in polycrystalline materials, free surfaces in nanoparticles, and phase boundaries in multiphase materials. Therefore, understanding and controlling interfacial processes is a key aspect of materials design and discovery efforts. Recent developments in advanced manufacturing and synthesis techniques have enabled the fabrication of materials architectures with intricate nanoscale features. Of particular interest is solid-state sintering, known for creating complex and high-precision geometries with controlled microstructures. While sintering science has been the subject of active research, very …


Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang Dec 2023

Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang

All Dissertations

This dissertation presents an HPC-enabled fast and configurable dynamic simulation, analysis, and learning framework for complex power system adaptation and control. Dynamic simulation for a large transmission system comprising thousands of buses and branches implies the latency of complicated numerical computations. However, faster-than-real-time execution is often required to provide timely support for power system planning and operation. The traditional approaches for speeding up the simulation demand extensive computing facilities such as CPU-based multi-core supercomputers, resulting in heavily resource-dependent solutions. In this work, by coupling the Message Passing Interface (MPI) protocol with an advanced heterogeneous programming environment, further acceleration can be …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi Dec 2023

Understanding The Interaction Of Environmental Contaminants With Polystyrene Nanoparticles And Dna Using Nuclear Magnetic Resonance Spectroscopy And Density Functional Theory, Saduni Arachchi

All Dissertations

The objective of the thesis is to study the effect of environmental pollutants on polystyrene nanoparticles and biomolecules. This is done in two different techniques, particularly NMR and density functional theory. In this thesis, we use a combination of 1H NMR, Saturation-Transfer Difference (STD) NMR and relaxation experiments to study the interactions, kinetics and dynamics of antibiotics with polystyrene nanoparticles. (PS NPs) Density functional theory (DFT) is used to study the binding of commonly used non-oxidative hair dyes to biomolecules (DNA and amino acids) and PS particles.


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Generalized Vulnerability Measures Of Graphs, Julia Vanlandingham Dec 2023

Generalized Vulnerability Measures Of Graphs, Julia Vanlandingham

All Theses

Several measures of vulnerability of a graph look at how easy it is to disrupt the network by removing/disabling vertices. As graph-theoretical parameters, they treat all vertices alike: each vertex is equally important. For example, the integrity parameter considers the number of vertices removed and the maximum number of vertices in a component that remains. We consider the generalization of these measures of vulnerability to weighted vertices in order to better model real-world applications. In particular, we investigate bounds on the weighted versions of connectivity and integrity, when polynomial algorithms for computation exist, and other characteristics of the generalized measures.


Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Zeros Of Modular Forms, Daozhou Zhu Aug 2023

Zeros Of Modular Forms, Daozhou Zhu

All Dissertations

Let $E_k(z)$ be the normalized Eisenstein series of weight $k$ for the full modular group $\text{SL}(2, \mathbb{Z})$. It is conjectured that all the zeros of the weight $k+\ell$ cusp form $E_k(z)E_\ell(z)-E_{k+\ell}(z)$ in the standard fundamental domain lie on the boundary. Reitzes, Vulakh and Young \cite{Reitzes17} proved that this statement is true for sufficiently large $k$ and $\ell$. Xue and Zhu \cite{Xue} proved the cases when $\ell=4,6,8$ with $k\geq\ell$, all the zeros of $E_k(z)E_\ell(z)-E_{k+\ell}(z)$ lie on the arc $|z|=1$. For all $k\geq\ell\geq10$, we will use the same method as \cite{Reitzes17} to locate these zeros on the arc $|z|=1$, and improve the …


All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan Aug 2023

All Hands On Deck: Choosing Virtual End Effector Representations To Improve Near Field Object Manipulation Interactions In Extended Reality, Roshan Venkatakrishnan

All Dissertations

Extended reality, or "XR", is the adopted umbrella term that is heavily gaining traction to collectively describe Virtual reality (VR), Augmented reality (AR), and Mixed reality (MR) technologies. Together, these technologies extend the reality that we experience either by creating a fully immersive experience like in VR or by blending in the virtual and "real" worlds like in AR and MR.

The sustained success of XR in the workplace largely hinges on its ability to facilitate efficient user interactions. Similar to interacting with objects in the real world, users in XR typically interact with virtual integrants like objects, menus, windows, …


Cyber Attack Surface Mapping For Offensive Security Testing, Douglas Everson Aug 2023

Cyber Attack Surface Mapping For Offensive Security Testing, Douglas Everson

All Dissertations

Security testing consists of automated processes, like Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST), as well as manual offensive security testing, like Penetration Testing and Red Teaming. This nonautomated testing is frequently time-constrained and difficult to scale. Previous literature suggests that most research is spent in support of improving fully automated processes or in finding specific vulnerabilities, with little time spent improving the interpretation of the scanned attack surface critical to nonautomated testing. In this work, agglomerative hierarchical clustering is used to compress the Internet-facing hosts of 13 representative companies as collected by the Shodan search …


Algebraic And Integral Closure Of A Polynomial Ring In Its Power Series Ring, Joseph Swanson Aug 2023

Algebraic And Integral Closure Of A Polynomial Ring In Its Power Series Ring, Joseph Swanson

All Dissertations

Let R be a domain. We look at the algebraic and integral closure of a polynomial ring, R[x], in its power series ring, R[[x]]. A power series α(x) ∈ R[[x]] is said to be an algebraic power series if there exists F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0, where F (x, y) ̸ = 0. If F (x, y) is monic, then α(x) is said to be an integral power series. We characterize the units of algebraic and integral power series. We show that the only algebraic power series with infinite radii of convergence are …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


Evaluating The Feasibility Of Using Strain Measured During Sinusoidal Rate Pumping Tests To Characterize An Aquifer, Riley Blais Aug 2023

Evaluating The Feasibility Of Using Strain Measured During Sinusoidal Rate Pumping Tests To Characterize An Aquifer, Riley Blais

All Theses

Pumping tests with sinusoidal variation in pumping rate have been proposed as a method for improving aquifer characterization. These tests can interrogate a larger aquifer volume than slug tests and they can be more sensitive to small variations in drawdown. Current methods of using sinusoidal variations of rate are based on measuring pressure signals from the reservoir or aquifer, which requires access to monitoring wells. An alternative approach has been developed that measures the strain in the vadose zone instead of pressure in the reservoir. An instrument has been developed at Clemson University that can measure small strains using optical …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Multi-Commodity Flow Models For Logistic Operations Within A Contested Environment, Isabel Strinsky Aug 2023

Multi-Commodity Flow Models For Logistic Operations Within A Contested Environment, Isabel Strinsky

All Theses

Today's military logistics officers face a difficult challenge, generating route plans for mass deployments within contested environments. The current method of generating route plans is inefficient and does not assess the vulnerability within supply networks and chains. There are few models within the current literature that provide risk-averse solutions for multi-commodity flow models. In this thesis, we discuss two models that have the potential to aid military planners in creating route plans that account for risk and uncertainty. The first model we introduce is a continuous time model with chance constraints. The second model is a two-stage discrete time model …


Null Space Removal In Finite Element Discretizations, Pengfei Jia Aug 2023

Null Space Removal In Finite Element Discretizations, Pengfei Jia

All Theses

Partial differential equations are frequently utilized in the mathematical formulation of physical problems. Boundary conditions need to be applied in order to obtain the unique solution to such problems. However, some types of boundary conditions do not lead to unique solutions because the continuous problem has a null space. In this thesis, we will discuss how to solve such problems effectively. We first review the foundation of all three problems and prove that Laplace problem, linear elasticity problem and Stokes problem can be well posed if we restrict the test and trial space in the continuous and discrete finite element …


Concentration Theorems For Orthonormal Sequences In A Reproducing Kernel Hilbert Space, Travis Alvarez Aug 2023

Concentration Theorems For Orthonormal Sequences In A Reproducing Kernel Hilbert Space, Travis Alvarez

All Dissertations

Let H be a reproducing kernel Hilbert space with reproducing kernel elements {Kx} indexed by a measure space {X,mu}. If H can be embedded in L2(X,mu), then H can be viewed as a framed Hilbert space. We study concentration of orthonormal sequences in such reproducing kernel Hilbert spaces.

Defining different versions of concentration, we find quantitative upper bounds on the number of orthonormal functions that can be classified by such concentrations. Examples are shown to prove sharpness of the bounds. In the cases that we can add "concentrated" orthonormal vectors indefinitely, the growth rate of doing so is shown.


The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess Aug 2023

The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess

All Dissertations

The focus of this research is to investigate the effects of allostery on the function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, using well-defined statistical analyses of the dynamic changes of the protein and variants with unique single point substitutions 1. The experimental data1 evaluated here only characterized HIV-1 protease with one of its potential target substrates. Probing the dynamic interactions of the residues of an enzyme and its variants can offer insight of the developmental importance for allosteric signaling and their connection to a protein’s function. The realignment of the secondary structure elements can …


Electron-Transfer Mediated Photo-Switching In Nanoparticles, Liaoran Cao Aug 2023

Electron-Transfer Mediated Photo-Switching In Nanoparticles, Liaoran Cao

All Dissertations

Previous publications from our lab demonstrated viable approaches to design a photo-switching nanoparticle with arguably superior brightness and photostability resulting in an improved resolution in localization-based microscopy, as compared to other photo-switching dyes or particles. As a follow-up, this dissertation is focused on two major tasks: first, developing nanoparticles with better photo-switching properties for super-resolution imaging; second, trying to achieve a better physical picture of the mechanisms involved in photo-switching, including polaron dynamics, charge transfer, and energy transfer. A new class of photo-switchable nanoparticles was developed by blending conjugated polymer semiconductor with fullerene-based electron acceptors, and further blending with polystyrene …