Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari Aug 2022

Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari

All Dissertations

The emergence of two-dimensional (2D) layered materials provides unprecedented opportunities for studying excitonic physics due to the strong Coulomb interaction between the electron-hole pair. Because of the reduced dimensionality and weak dielectric screening, the exciton is stable at room temperature, unlike bulk semiconductors. The evolution from low to high carrier density for optical gain in 2D semiconductors involves insulating exciton gas, exciton condensation, co-existence of various excitonic complexes, electron-hole plasmas (EHPs), or electron-hole liquids (EHLs), leading to the Mott transition. Strong interaction among the excitons, such as exciton-exciton annihilation (EEA), serves as a hot-carrier generation. A bound exciton dissociates into …


Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker May 2022

Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker

All Dissertations

Uranium (U) released from the M-Area at the Department of Energy Savannah River Site into Tims Branch, a seasonal wetland and braided stream system, is estimated to be 43,500 kg between 1965 and 1984. The motivation for this work is the uranium’s persistence in the wetland for decades, where it is estimated that 80% of the U currently remains in the Tims Branch wetland. U has begun to incorporate into wetland iron (Fe) and carbon cycles, associating with local Fe mineralogy and deposits of rich wetland organic matter (OM). The objective of this work is to characterize the chemical phases …


Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano May 2022

Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano

All Theses

Toxoplasma gondii is a pathogenic microorganism that is currently a threat to public health. Understanding the fate and transport of T. gondii through the soil and groundwater is vital in determining the risk it poses to water resources and human health. The physico-chemical interactions between the groundwater and the bio colloid within an aquifer will dictate its mobility and its ability to infect humans. This research examines how various naturally occurring groundwater chemistries containing organic compounds and monovalent and divalent salt solutions will alter the fate and transport of T. gondii. Solutions containing various concentrations of humic acid, fulvic …