Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

A Visual Tour Of Dynamical Systems On Color Space, Jonathan Maltsman Jan 2023

A Visual Tour Of Dynamical Systems On Color Space, Jonathan Maltsman

HMC Senior Theses

We can think of a pixel as a particle in three dimensional space, where its x, y and z coordinates correspond to its level of red, green, and blue, respectively. Just as a particle’s motion is guided by physical rules like gravity, we can construct rules to guide a pixel’s motion through color space. We can develop striking visuals by applying these rules, called dynamical systems, onto images using animation engines. This project explores a number of these systems while exposing the underlying algebraic structure of color space. We also build and demonstrate a Visual DJ circuit board for …


Energy As A Limiting Factor In Neuronal Seizure Control: A Mathematical Model, Sophia E. Epstein Jan 2022

Energy As A Limiting Factor In Neuronal Seizure Control: A Mathematical Model, Sophia E. Epstein

CMC Senior Theses

The majority of seizures are self-limiting. Within a few minutes, the observed neuronal synchrony and deviant dynamics of a tonic-clonic or generalized seizure often terminate. However, a small epilesia partialis continua can occur for years. The mechanisms that regulate subcortical activity of neuronal firing and seizure control are poorly understood. Published studies, however, through PET scans, ketogenic treatments, and in vivo mouse experiments, observe hypermetabolism followed by metabolic suppression. These observations indicate that energy can play a key role in mediating seizure dynamics. In this research, I seek to explore this hypothesis and propose a mathematical framework to model how …


Climate Change In A Differential Equations Course: Using Bifurcation Diagrams To Explore Small Changes With Big Effects, Justin Dunmyre, Nicholas Fortune, Tianna Bogart, Chris Rasmussen, Karen Keene Feb 2019

Climate Change In A Differential Equations Course: Using Bifurcation Diagrams To Explore Small Changes With Big Effects, Justin Dunmyre, Nicholas Fortune, Tianna Bogart, Chris Rasmussen, Karen Keene

CODEE Journal

The environmental phenomenon of climate change is of critical importance to today's science and global communities. Differential equations give a powerful lens onto this phenomenon, and so we should commit to discussing the mathematics of this environmental issue in differential equations courses. Doing so highlights the power of linking differential equations to environmental and social justice causes, and also brings important science to the forefront in the mathematics classroom. In this paper, we provide an extended problem, appropriate for a first course in differential equations, that uses bifurcation analysis to study climate change. Specifically, through studying hysteresis, this problem highlights …


The Battle Against Malaria: A Teachable Moment, Randy K. Schwartz Feb 2017

The Battle Against Malaria: A Teachable Moment, Randy K. Schwartz

Journal of Humanistic Mathematics

Malaria has been humanity’s worst public health problem throughout recorded history. Mathematical methods are needed to understand which factors are relevant to the disease and to develop counter-measures against it. This article and the accompanying exercises provide examples of those methods for use in lower- or upper-level courses dealing with probability, statistics, or population modeling. These can be used to illustrate such concepts as correlation, causation, conditional probability, and independence. The article explains how the apparent link between sickle cell trait and resistance to malaria was first verified in Uganda using the chi-squared probability distribution. It goes on to explain …


Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton Jan 2016

Topological Data Analysis For Systems Of Coupled Oscillators, Alec Dunton

HMC Senior Theses

Coupled oscillators, such as groups of fireflies or clusters of neurons, are found throughout nature and are frequently modeled in the applied mathematics literature. Earlier work by Kuramoto, Strogatz, and others has led to a deep understanding of the emergent behavior of systems of such oscillators using traditional dynamical systems methods. In this project we outline the application of techniques from topological data analysis to understanding the dynamics of systems of coupled oscillators. This includes the examination of partitions, partial synchronization, and attractors. By looking for clustering in a data space consisting of the phase change of oscillators over a …


My Finite Field, Matthew Schroeder Jan 2015

My Finite Field, Matthew Schroeder

Journal of Humanistic Mathematics

A love poem written in the language of mathematics.


A Mathematician Weighs In On The Evolution Debate, Kris H. Green Jul 2011

A Mathematician Weighs In On The Evolution Debate, Kris H. Green

Journal of Humanistic Mathematics

There are a variety of reasons underlying the lack of public acceptance for the theory of evolution in the United States. An overlooked cause is related to problems with the mathematics curriculum in the K-12 setting. In this essay, we examine this relationship and propose changes to the mathematics curriculum that could improve mathematical thinking while also providing a basis for understanding theories, like evolution, that are poorly understood.


Finding The Beat In Music: Using Adaptive Oscillators, Kate M. Burgers May 2011

Finding The Beat In Music: Using Adaptive Oscillators, Kate M. Burgers

HMC Senior Theses

The task of finding the beat in music is simple for most people, but surprisingly difficult to replicate in a robot. Progress in this problem has been made using various preprocessing techniques (Hitz 2008; Tomic and Janata 2008). However, a real-time method is not yet available. Methods using a class of oscillators called relay relaxation oscillators are promising. In particular, systems of forced Hopf oscillators (Large 2000; Righetti et al. 2006) have been used with relative success. This work describes current methods of beat tracking and develops a new method that incorporates the best ideas from each existing method and …


Noise, Delays, And Resonance In A Neural Network, Austin Quan May 2011

Noise, Delays, And Resonance In A Neural Network, Austin Quan

HMC Senior Theses

A stochastic-delay differential equation (SDDE) model of a small neural network with recurrent inhibition is presented and analyzed. The model exhibits unexpected transient behavior: oscillations that occur at the boundary of the basins of attraction when the system is bistable. These are known as delay-induced transitory oscillations (DITOs). This behavior is analyzed in the context of stochastic resonance, an unintuitive, though widely researched phenomenon in physical bistable systems where noise can play in constructive role in strengthening an input signal. A method for modeling the dynamics using a probabilistic three-state model is proposed, and supported with numerical evidence. The potential …


Review: The Semi-Dynamical Reflection Equation: Solutions And Structure Matrices, Gizem Karaali Jan 2010

Review: The Semi-Dynamical Reflection Equation: Solutions And Structure Matrices, Gizem Karaali

Pomona Faculty Publications and Research

No abstract provided.


Ergodic And Combinatorial Proofs Of Van Der Waerden's Theorem, Matthew Samuel Rothlisberger Jan 2010

Ergodic And Combinatorial Proofs Of Van Der Waerden's Theorem, Matthew Samuel Rothlisberger

CMC Senior Theses

Followed two different proofs of van der Waerden's theorem. Found that the two proofs yield important information about arithmetic progressions and the theorem. van der Waerden's theorem explains the occurrence of arithmetic progressions which can be used to explain such things as the Bible Code.


Asymptotic Dynamics Of Attractive-Repulsive Swarms, Andrew J. Leverentz '08, Chad M. Topaz, Andrew J. Bernoff Jul 2009

Asymptotic Dynamics Of Attractive-Repulsive Swarms, Andrew J. Leverentz '08, Chad M. Topaz, Andrew J. Bernoff

All HMC Faculty Publications and Research

We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel’s first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly supported population has edges that behave like traveling waves whose speed, density, and slope we calculate. …


Turing Patterns On Growing Spheres: The Exponential Case, Julijana Gjorgjieva, Jon T. Jacobsen Jan 2007

Turing Patterns On Growing Spheres: The Exponential Case, Julijana Gjorgjieva, Jon T. Jacobsen

All HMC Faculty Publications and Research

We consider Turing patterns for reaction-diffusion systems on the surface of a growing sphere. In particular, we are interested in the effect of dynamic growth on the pattern formation. We consider exponential isotropic growth of the sphere and perform a linear stability analysis and compare the results with numerical simulations.


A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu Apr 2005

A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu

All HMC Faculty Publications and Research

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to …