Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

California Polytechnic State University, San Luis Obispo

Optics

Magneto Optical Trap

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Automation Of The Transition Identification Procedure For Trapping Rubidium Atoms In A Magneto-Optical Trap, Michael P. Fletcher May 2022

Automation Of The Transition Identification Procedure For Trapping Rubidium Atoms In A Magneto-Optical Trap, Michael P. Fletcher

Physics

The words “quantum computer” often conjure images of science fiction and unrealistic technology from an impossible future. Some may even believe that they aren’t real or are only theoretical. The truth is that quantum computers are real, tangible systems with real life uses and rooted in credible scientific research. Today, many groups of scientists collaborate on research into better ways of implementing and improving quantum computing techniques. This paper will be addressing the systems required and phenomena used to achieve neutral atom trapping for quantum computation. This thesis will outline the physical phenomena involved with the frequency tuning process for …


Projection Of Diffracted Optical Atom Traps, Jeremy Kruger Sep 2011

Projection Of Diffracted Optical Atom Traps, Jeremy Kruger

Physics

Theoretical calculations were performed for the projection of a diffraction pattern created by a pinhole through a single-lens system using vector diffraction theory and a combination of programs (MathCAD, Igor, etc.). The projected diffraction patterns were then experimentally created, recorded, and analyzed. This work is part of a larger collaboration with Dr. Kat Gillen, to trap and manipulate atoms in a Magneto Optical Trap (MOT) and to make further steps in the direction of Quantum Computing using trapped neutral atoms.