Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Improving Production Of Carbon Nanotube Composites, Dan Broadbent Aug 2015

Improving Production Of Carbon Nanotube Composites, Dan Broadbent

Faculty Publications

Carbon nanotube (CNT) composites offer great promise for making lighter, thinner and stronger structures. Producing CNT composites, however, can be tricky. The focus of this work is to improve production yields of CNT composites by doing research and development in two areas:

  • Research the relationship between ethylene gas concentrations used during CNT growth and yields of usable composite films produced.
  • Develop furnace for growing larger CNT samples, which will enable larger sizes and quantities of research product.


Instrument For Precision Long-Term Ss-Decay Rate Measurements, M. J. Ware, Scott D. Bergeson, J. E. Ellsworth, M. Groesbeck, J. E. Hansen, D. Pace, J. Peatross Jan 2015

Instrument For Precision Long-Term Ss-Decay Rate Measurements, M. J. Ware, Scott D. Bergeson, J. E. Ellsworth, M. Groesbeck, J. E. Hansen, D. Pace, J. Peatross

Faculty Publications

We describe an experimental setup for making precision measurements of relative ß-decay rates of 22Na, 36Cl, 54Mn, 60Co, 90Sr, 133Ba, 137Cs, 152Eu, and 154Eu. The radioactive samples are mounted in two automated sample changers that sequentially position the samples with high spatial precision in front of sets of detectors. The set of detectors for one sample changer consists of four Geiger-Müller (GM) tubes and the other set of detectors consists of two NaI scintillators. The statistical uncertainty in the count rate is few times 0.01% per day for the GM …


Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo Jan 2015

Using Higher Ionization States To Increase Coulomb Coupling In An Ultracold Neutral Plasma, M. Lyon, Scott D. Bergeson, A. Diaw, M. S. Murillo

Faculty Publications

We report measurements and simulations of the time-evolving rms velocity distribution in an ultracold neutral plasma. A strongly coupled ultracold neutral Ca+ plasma is generated by photoionizing laser-cooled atoms close to threshold. A fraction of these ions is then promoted to the second ionization state to form a mixed Ca+-Ca2+ plasma. By varying the time delay between the first and the second ionization events, a minimum in ion heating is achieved. We show that the Coulomb strong-coupling parameter Γ increases by a factor of 1.4 to a maximum value of 3.6. A pure Ca2+ plasma …


Strongly-Coupled Plasmas Formed From Laser-Heated Solids, M. Lyon, Scott D. Bergeson, G. Hart, M. S. Murillo Jan 2015

Strongly-Coupled Plasmas Formed From Laser-Heated Solids, M. Lyon, Scott D. Bergeson, G. Hart, M. S. Murillo

Faculty Publications

We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred.