Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

Series

Artificial intelligence

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Learning Policies For Embodied Virtual Agents Through Demonstration, Jonathan Dinerstein, Parris K. Egbert, Dan A. Ventura Jan 2008

Learning Policies For Embodied Virtual Agents Through Demonstration, Jonathan Dinerstein, Parris K. Egbert, Dan A. Ventura

Faculty Publications

Although many powerful AI and machine learning techniques exist, it remains difficult to quickly create AI for embodied virtual agents that produces visually lifelike behavior. This is important for applications (e.g., games, simulators, interactive displays) where an agent must behave in a manner that appears human-like. We present a novel technique for learning reactive policies that mimic demonstrated human behavior. The user demonstrates the desired behavior by dictating the agent’s actions during an interactive animation. Later, when the agent is to behave autonomously, the recorded data is generalized to form a continuous state-to-action mapping. Combined with an appropriate animation algorithm …


An Integrated Framework For Learning And Reasoning, Christophe G. Giraud-Carrier, Tony R. Martinez Aug 1995

An Integrated Framework For Learning And Reasoning, Christophe G. Giraud-Carrier, Tony R. Martinez

Faculty Publications

Learning and reasoning are both aspects of what is considered to be intelligence. Their studies within AI have been separated historically, learning being the topic of machine learning and neural networks, and reasoning falling under classical (or symbolic) AI. However, learning and reasoning are in many ways interdependent. This paper discusses the nature of some of these interdependencies and proposes a general framework called FLARE, that combines inductive learning using prior knowledge together with reasoning in a propositional setting. Several examples that test the framework are presented, including classical induction, many important reasoning protocols and two simple expert systems.