Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Brigham Young University

Faculty Publications

UAV

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Supporting Wilderness Search And Rescue With Integrated Intelligence: Autonomy And Information At The Right Time And The Right Place, Michael A. Goodrich, Lanny Lin, Bryan S. Morse, Michael Roscheck Jul 2010

Supporting Wilderness Search And Rescue With Integrated Intelligence: Autonomy And Information At The Right Time And The Right Place, Michael A. Goodrich, Lanny Lin, Bryan S. Morse, Michael Roscheck

Faculty Publications

Current practice in Wilderness Search and Rescue (WiSAR) is analogous to an intelligent system designed to gather and analyze information to find missing persons in remote areas. The system consists of multiple parts — various tools for information management (maps, GPS, etc) distributed across personnel with different skills and responsibilities. Introducing a camera-equipped mini-UAV into this task requires autonomy and information technology that itself is an integrated intelligent system to be used by a sub-team that must be integrated into the overall intelligent system. In this paper, we identify key elements of the integration challenges along two dimensions: (a) attributes …


Using A Mini-Uav To Support Wilderness Search And Rescue: Practices For Human-Robot Teaming, Julie A. Adams, Brian G. Buss, Joseph L. Cooper, Michael A. Goodrich, Curtis Humphrey, Ron Zeeman Sep 2007

Using A Mini-Uav To Support Wilderness Search And Rescue: Practices For Human-Robot Teaming, Julie A. Adams, Brian G. Buss, Joseph L. Cooper, Michael A. Goodrich, Curtis Humphrey, Ron Zeeman

Faculty Publications

Wilderness Search and Rescue can benefit from aerial imagery of the search area. Mini Unmanned Aerial Vehicles can potentially provide such imagery, provided that the autonomy, search algorithms, and operator control unit are designed to support coordinated human-robot search teams. Using results from formal analyses of the WiSAR problem domain, we summarize and discuss information flow requirements for WiSAR with an eye toward the efficient use of mUAVs to support search. We then identify and discuss three different operational paradigms for performing field searches, and identify influences that affect which human-robot team paradigm is best. Since the likely location of …


Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich May 2007

Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

Ground breaking concepts in optimal search theory were developed during World War II by the U.S. Navy. These concepts use an assumed detection model to calculate a detection probability rate and an optimal search allocation. Although this theory is useful in determining when and where search effort should be applied, it offers little guidance for the planning of search paths. This paper explains how search theory can be applied to path planning for an SUAV with a fixed CCD camera. Three search strategies are developed: greedy search, contour search, and composite search. In addition, the concepts of search efficiency and …


Performance Evaluation Of Vision-Based Navigation And Landing On A Rotorcraft Unmanned Aerial Vehicle, David Hubbard, Timothy W. Mclain, Bryan S. Morse, Colin Theodore, Mark Tischler Feb 2007

Performance Evaluation Of Vision-Based Navigation And Landing On A Rotorcraft Unmanned Aerial Vehicle, David Hubbard, Timothy W. Mclain, Bryan S. Morse, Colin Theodore, Mark Tischler

Faculty Publications

A Rotorcraft UAV provides an ideal experimental platform for vision-based navigation. This paper describes the flight tests of the US Army PALACE project, which implements Moravec’s pseudo-normalized correlation tracking algorithm. The tracker uses the movement of the landing site in the camera, a laser range, and the aircraft attitude from an IMU to estimate the relative motion of the UAV. The position estimate functions as a GPS equivalent to enable the rotorcraft to maneuver without the aid of GPS. With GPS data as a baseline, tests were performed in simulation and in flight that measure the accuracy of the position …


Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich Mar 2006

Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

This paper presents a path planner for sensing closely-spaced targets from a fixed-wing unmanned air vehicle (UAV) having a specified sensor footprint. The planner is based on the learning real-time A* (LRTA*) search algorithm and produces dynamically feasible paths that accomplish the sensing objectives in the shortest possible distance. A tree of candidate paths that span the area of interest is created by assembling primitive turn and straight sections of a specified step size in a sequential fashion from the starting position of the UAV. An LRTA* search of the tree produces feasible paths any time during its execution and …


Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich Jan 2005

Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich

Faculty Publications

The objective of this paper is to describe the design and implementation of a small semi-autonomous fixed-wing unmanned air vehicle. In particular we describe the hardware and software architectures used in the design. We also describe a low weight, low cost autopilot developed at Brigham Young University and the algorithms associated with the autopilot. Novel PDA and voice interfaces to the UAV are described. In addition, we overview our approach to real-time path planning, trajectory generation, and trajectory tracking. The paper is augmented with movie files that demonstrate the functionality of the UAV and its control software.


Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain Aug 2003

Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain

Faculty Publications

This work develops an any-time path planner, based on the learning real-time A* (LRTA*) search, for generating flyable paths that allow an aircraft with a specified sensor footprint to sense a group of closely-spaced targets. The LRTA* algorithm searches a tree of flyable paths for the branch that accomplishes the desired objectives in the shortest distance. The tree of paths is created by assembling primitive turn and straight sections of a specified step size. The operating parameters for the LRTA* search directly influence the running time and path-length performance of the search. A modified LRTA* search is presented that terminates …