Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Water Quality Responses To A Semi-Arid Beaver Meadow In Boise, Idaho, Luise Bayer Winslow Dec 2021

Water Quality Responses To A Semi-Arid Beaver Meadow In Boise, Idaho, Luise Bayer Winslow

Boise State University Theses and Dissertations

Beavers have been instrumental in shaping the North American riverine landscape. However, land use change and beaver trapping have caused large decreases in beaver populations, resulting in fundamental changes to river morphology, hydrology, and biogeochemical function. Effective river restoration and remediation of arid western rivers relies on a comprehensive interpretation of how beaver activity influences water quantity and quality. In this study, I compared two stream reaches with and without beaver dams in a semi-arid watershed, to quantify the effects of beaver activity on hydrology and biogeochemistry. Within each reach, I combined dilution gauging and stream tracer experiments to determine …


Laboratory Measurement Of Electrical And Hydraulic Properties Of Regolith Over Granitic Bedrock, Taylor James Bienvenue Aug 2021

Laboratory Measurement Of Electrical And Hydraulic Properties Of Regolith Over Granitic Bedrock, Taylor James Bienvenue

Boise State University Theses and Dissertations

Characterizing water flux within the critical zone (CZ) is essential for a multitude of studies and applications related to irrigation, drainage, water management, and contaminant transport. Trying to measure water flux in the critical zone, specifically in the subsurface, is difficult due to the associated structural heterogeneity and complex interactions taking place between biological, chemical, and physical processes. Current methods (i.e., inferred from soil suction and soil moisture measurements) to characterize water flux within the critical zone can be time consuming and are not directly related to water flux. Recent literature has provided evidence that self-potential (SP) is a promising …


Using Remote Sensing Data Fusion Modeling To Track Seasonal Snow Cover In A Mountain Watershed, Allison N. Vincent May 2021

Using Remote Sensing Data Fusion Modeling To Track Seasonal Snow Cover In A Mountain Watershed, Allison N. Vincent

Boise State University Theses and Dissertations

Seasonal snowfall is the largest component of the water budget in many mountain headwater regions around the world. In addition to sustaining biological water needs in drier, lower elevation areas throughout the year, mountain snowpack also provides essential water inputs to the Critical Zone (CZ) - the outer layer of the Earth’s surface, which hosts a variety of biogeochemical processes responsible for transforming inorganic matter into forms usable for life. Water is a known driver of CZ activity, but uncertainty exists in its spatial and temporal interactions with CZ processes, particularly in the complex terrain of heterogeneous mountain areas. Increasing …


Pooling Data Improves Multimodel Idf Estimates Over Median-Based Idf Estimates: Analysis Over The Susquehanna And Florida, Abhishekh Kumar Srivastava, Richard Grotjahn, Paul Aaron Ullrich, Mojtaba Sadegh Apr 2021

Pooling Data Improves Multimodel Idf Estimates Over Median-Based Idf Estimates: Analysis Over The Susquehanna And Florida, Abhishekh Kumar Srivastava, Richard Grotjahn, Paul Aaron Ullrich, Mojtaba Sadegh

Civil Engineering Faculty Publications and Presentations

Traditional multimodel methods for estimating future changes in precipitation intensity, duration, and frequency (IDF) curves rely on mean or median of models’ IDF estimates. Such multimodel estimates are impaired by large estimation uncertainty, shadowing their efficacy in planning efforts. Here, assuming that each climate model is one representation of the underlying data generating process, i.e., the Earth system, we propose a novel extension of current methods through pooling model data: (i) evaluate performance of climate models in simulating the spatial and temporal variability of the observed annual maximum precipitation (AMP), (ii) bias-correct and pool historical and future AMP data of …