Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Boise State University

Selected Works

2011

Molecular beam epitaxy

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Molecular Beam Epitaxy Approach To The Graphitization Of Gaas(100) Surfaces, Paul J. Simmonds, John Simon, Jerry M. Woodall, Minjoo Larry Lee May 2011

Molecular Beam Epitaxy Approach To The Graphitization Of Gaas(100) Surfaces, Paul J. Simmonds, John Simon, Jerry M. Woodall, Minjoo Larry Lee

Paul J. Simmonds

The authors present a method for obtaining graphitized carbon on GaAs(100) surfaces. Carbon-doped GaAs is grown by molecular beam epitaxy before controlled thermal etching within the growth chamber. An AlAs layer beneath the carbon-doped GaAs acts as a thermal etch stop. As the GaAs is etched away, the carbondopant atoms remain on the surface due to their low vapor pressure. The total number of carbon atoms available is precisely controllable by the doping density and thickness of the carbon-doped GaAs layer. Characteristic phonon modes in Raman spectra from the thermally etchedsurfaces show that the residual surfacecarbon atoms form sp2 …


Molecular Beam Epitaxy Of Metamorphic InYGa1−YP Solar Cells On Mixed Anion GaasXP1−X/Gaas Graded Buffers, Stephanie Tomasulo, John Simon, Paul J. Simmonds, Jonathan Biagiotti, Minjoo L. Lee May 2011

Molecular Beam Epitaxy Of Metamorphic InYGa1−YP Solar Cells On Mixed Anion GaasXP1−X/Gaas Graded Buffers, Stephanie Tomasulo, John Simon, Paul J. Simmonds, Jonathan Biagiotti, Minjoo L. Lee

Paul J. Simmonds

The authors have grown metamorphic InyGa1−yP on optimized GaAsxP1−x/GaAs graded buffers via solid source molecular beam epitaxy(MBE) for multijunction solar cell applications. In this work, the authors show that a previously developed kinetic growth model can be used to predict the composition of mixed anion GaAsxP1−x alloys on GaAs as a function of substrate temperature and group-V flux. The advantages of using a high growth temperature of 700 °C are then described, including the minimized dependence of composition on small temperature variations, a linear dependence of film composition on …