Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Series

2019

Articles 1 - 30 of 44

Full-Text Articles in Physical Sciences and Mathematics

Analytic Non-Adiabatic Derivative Coupling Terms For Spin-Orbit Mrci Wavefunctions. I. Formalism, Lachlan T. Belcher, Gary S. Kedziora, David E. Weeks Dec 2019

Analytic Non-Adiabatic Derivative Coupling Terms For Spin-Orbit Mrci Wavefunctions. I. Formalism, Lachlan T. Belcher, Gary S. Kedziora, David E. Weeks

Faculty Publications

Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to at least 3n + 1 calculations for finite difference methods, where n is the number of nuclei. Analytic nonadiabatic derivative coupling terms (DCTs), which are calculated in a similar fashion, are used to remove nondiagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities, gradients and DCTs, for the State-Averaged MultiReference Configuration Interaction with Singles and Doubles (MRCI-SD) …


Monte Carlo And Experimental Analysis Of A Novel Directional Rotating Scatter Mask Gamma Detection System, Julie V. Logan, Darren E. Holland, Larry W. Burggraf, Justin A. Clinton, Buckley E. O'Day Iii Dec 2019

Monte Carlo And Experimental Analysis Of A Novel Directional Rotating Scatter Mask Gamma Detection System, Julie V. Logan, Darren E. Holland, Larry W. Burggraf, Justin A. Clinton, Buckley E. O'Day Iii

Faculty Publications

Excerpt: This work demonstrates successful experimental operation of a prototype system to identify source direction which was modeled using a library of signals simulated using GEANT and a novel algorithm....


E700xd Portable Doppler Radar Energy Systems Analysis, Brandon M. Bailey [*], Torrey J. Wagner, Jada Williams Dec 2019

E700xd Portable Doppler Radar Energy Systems Analysis, Brandon M. Bailey [*], Torrey J. Wagner, Jada Williams

Faculty Publications

Occurring in industrialized nations, inexpensive and abundantly available power is routinely taken for granted. However, energy resilience and to a lesser extent price are key concerns when considering potential solutions for disaster response, disaster relief, or military operations. The Department of Defense (DoD) currently uses a 5 kW generator to power the E700XD portable Doppler radar system when grid power is unavailable [1]. While the radar has an approximate power consumption of 2.5 kW, there is a potential for higher demand due to weather conditions [2]. This paper examines the cost of operating a currently installed generator, compared to the …


Deep Donors And Acceptors In Β-Ga2O3 Crystals: Determination Of The Fe2+/3+ Level By A Noncontact Method, Christopher A. Lenyk, Trevor A . Gustafson, Larry E. Halliburton, Nancy C. Giles Dec 2019

Deep Donors And Acceptors In Β-Ga2O3 Crystals: Determination Of The Fe2+/3+ Level By A Noncontact Method, Christopher A. Lenyk, Trevor A . Gustafson, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR), infrared absorption, and thermoluminescence (TL) are used to determine the Fe2+/3+ level in Fe-doped β-Ga2O3 crystals. With these noncontact spectroscopy methods, a value of 0.84 ± 0.05 eV below the conduction band is obtained for this level. Our results clearly establish that the E2 level observed in deep level transient spectroscopy (DLTS) experiments is due to the thermal release of electrons from Fe2+ ions. The crystals used in this investigation were grown by the Czochralski method and contained large concentrations of Fe acceptors and Ir donors, and trace amounts of Cr …


Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz Dec 2019

Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz

Faculty Publications

We develop a method to generate electromagnetic nonuniformly correlated (ENUC) sources from vector Gaussian Schell-model (GSM) beams. Having spatially varying correlation properties, ENUC sources are more difficult to synthesize than their Schell-model counterparts (which can be generated by filtering circular complex Gaussian random numbers) and, in past work, have only been realized using Cholesky decomposition—a computationally intensive procedure. Here we transform electromagnetic GSM field instances directly into ENUC instances, thereby avoiding computing Cholesky factors resulting in significant savings in time and computing resources. We validate our method by generating (via simulation) an ENUC beam with desired parameters. We find the …


Analytic Non-Adiabatic Derivative Coupling Terms For Spin-Orbit Mrci Wavefunctions. Ii. Derivative Coupling Terms And Coupling Angle For Khe (A2Π1/2) ⇔ Khe B2Σ1/2), Lachlan T. Belcher, Charlton D. Lewis, Gary S. Kedziora, David E. Weeks Dec 2019

Analytic Non-Adiabatic Derivative Coupling Terms For Spin-Orbit Mrci Wavefunctions. Ii. Derivative Coupling Terms And Coupling Angle For Khe (A2Π1/2) ⇔ Khe B2Σ1/2), Lachlan T. Belcher, Charlton D. Lewis, Gary S. Kedziora, David E. Weeks

Faculty Publications

A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented.


Polyphase Equiangular Tight Frames And Abelian Generalized Quadrangles, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson Nov 2019

Polyphase Equiangular Tight Frames And Abelian Generalized Quadrangles, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson, Cody E. Watson

Faculty Publications

An equiangular tight frame (ETF) is a type of optimal packing of lines in a finite-dimensional Hilbert space. ETFs arise in various applications, such as waveform design for wireless communication, compressed sensing, quantum information theory and algebraic coding theory. In a recent paper, signature matrices of ETFs were constructed from abelian distance regular covers of complete graphs. We extend this work, constructing ETF synthesis operators from abelian generalized quadrangles, and vice versa. This produces a new infinite family of complex ETFs as well as a new proof of the existence of certain generalized quadrangles. This work involves designing matrices whose …


Effect Of Ar(3p54p; 2p)+M -> Ar(3p54s; 1s)+M Branching Ratio On Optically Pumped Rare Gas Laser Performance, Daniel J. Emmons Ii, David E. Weeks Nov 2019

Effect Of Ar(3p54p; 2p)+M -> Ar(3p54s; 1s)+M Branching Ratio On Optically Pumped Rare Gas Laser Performance, Daniel J. Emmons Ii, David E. Weeks

Faculty Publications

Optically pumped rare gas laser performance is analyzed as a function of the Ar(3p54p; 2p) + M → Ar(3p54s; 1s) + M branching ratios. Due to the uncertainty in the branching ratios, a sensitivity study is performed to determine the effect on output and absorbed pump laser intensities. The analysis is performed using a radio frequency dielectric barrier discharge as the source of metastable production for a variety of Argon in Helium mixtures over pressures ranging from 200 to 500 Torr. Peak output laser intensities show a factor of 7 increase as the branching ratio is …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in …


Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter Nov 2019

Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter

Faculty Publications

In this paper an N-pursuer vs. M-evader team conflict is studied. The differential game of border defense is addressed and we focus on the game of degree in the region of the state space where the pursuers are able to win. This work extends classical differential game theory to simultaneously address weapon assignments and multi-player pursuit-evasion scenarios. Saddle-point strategies that provide guaranteed performance for each team regardless of the actual strategies implemented by the opponent are devised. The players' optimal strategies require the co-design of cooperative optimal assignments and optimal guidance laws. A representative measure of performance is proposed and …


Generating Electromagnetic Schell-Model Sources Using Complex Screens With Spatially Varying Auto- And Cross-Correlation Functions, Milo W. Hyde Iv Sep 2019

Generating Electromagnetic Schell-Model Sources Using Complex Screens With Spatially Varying Auto- And Cross-Correlation Functions, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any physically realizable electromagnetic Schell-model source. Our technique can be directly implemented on existing vector-beam generators that utilize spatial light modulators for coherence control, beam shaping, and relative phasing. This work significantly extends published research on the subject, where control over the partially coherent source’s cross-spectral density matrix was limited. We begin by presenting the statistical optics theory necessary to derive and implement our method. We then apply our technique, both analytically and in simulation, to produce two electromagnetic Schell-model sources from the literature. We demonstrate control over the full cross-spectral density matrices of …


Quantitative Analysis Of Cerium-Gallium Alloys Using A Hand-Held Laser Induced Breakdown Spectroscopy Device, Ashwin P. Rao, Matthew Cook, Howard L. Hall, Michael B. Shattan Sep 2019

Quantitative Analysis Of Cerium-Gallium Alloys Using A Hand-Held Laser Induced Breakdown Spectroscopy Device, Ashwin P. Rao, Matthew Cook, Howard L. Hall, Michael B. Shattan

Faculty Publications

A hand-held laser-induced breakdown spectroscopy device was used to acquire spectral emission data from laser-induced plasmas created on the surface of cerium-gallium alloy samples with Ga concentrations ranging from 0–3 weight percent. Ionic and neutral emission lines of the two constituent elements were then extracted and used to generate calibration curves relating the emission line intensity ratios to the gallium concentration of the alloy. The Ga I 287.4-nm emission line was determined to be superior for the purposes of Ga detection and concentration determination. A limit of detection below 0.25%was achieved using a multivariate regression model of the Ga I …


Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas Sep 2019

Ion Software-Defined Radio Metadata Standard Final Report, Sanjeev Gunawardena, Alexander Rugamer, Muhammad Subhan Hameed, Markel Arizabaleta, Thomas Pany, Javier Arribas

Faculty Publications

The ION GNSS SDR Metadata Standard describes the formatting and other essential PNT-related parameters of sampled data streams and files. This allows processors to seamlessly consume such data without the need to input these parameters manually. The technical development phase of the initial version of the standard has now been deemed complete and is currently undergoing the last remaining procedural steps towards adoption as a formal standard by the Institute of Navigation. This paper reports on the activities of the working group since September 2018 and summarizes the final products of the standard. It also reports on examples of early …


Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments. We …


Controlling The Spatial Coherence Of An Optical Source Using A Spatial Filter, Milo W. Hyde Iv Aug 2019

Controlling The Spatial Coherence Of An Optical Source Using A Spatial Filter, Milo W. Hyde Iv

Faculty Publications

This paper presents the theory for controlling the spectral degree of coherence via spatial filtering. Starting with a quasi-homogeneous partially coherent source, the cross-spectral density function of the field at the output of the spatial filter is found by applying Fourier and statistical optics theory. The key relation obtained from this analysis is a closed-form expression for the filter function in terms of the desired output spectral degree of coherence. This theory is verified with Monte Carlo wave-optics simulations of spatial coherence control and beam shaping for potential use in free-space optical communications and directed energy applications. The simulated results …


Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing [*], Brett J. Borghetti, Kevin C. Gross Aug 2019

Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing [*], Brett J. Borghetti, Kevin C. Gross

Faculty Publications

The increasing spatial and spectral resolution of hyperspectral imagers yields detailed spectroscopy measurements from both space-based and airborne platforms. These detailed measurements allow for material classification, with many recent advancements from the fields of machine learning and deep learning. In many scenarios, the hyperspectral image must first be corrected or compensated for atmospheric effects. Radiative Transfer (RT) computations can provide look up tables (LUTs) to support these corrections. This research investigates a dimension-reduction approach using machine learning methods to create an effective sensor-specific long-wave infrared (LWIR) RT model.


Hadamard Equiangular Tight Frames, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson Aug 2019

Hadamard Equiangular Tight Frames, Matthew C. Fickus, John Jasper, Dustin G. Mixon, Jesse D. Peterson

Faculty Publications

An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. They are often represented as the columns of a short, fat matrix. In certain applications we want this matrix to be flat, that is, have the property that all of its entries have modulus one. In particular, real flat ETFs are equivalent to self-complementary binary codes that achieve the Grey-Rankin bound. Some flat ETFs are (complex) Hadamard ETFs, meaning they arise by extracting rows from a (complex) Hadamard matrix. These include harmonic ETFs, which are obtained by extracting the rows of a character table …


Periodic Traveling Interfacial Hydroelastic Waves With Or Without Mass Ii: Multiple Bifurcations And Ripples, Benjamin F. Akers, David M. Ambrose, David W. Sulon Aug 2019

Periodic Traveling Interfacial Hydroelastic Waves With Or Without Mass Ii: Multiple Bifurcations And Ripples, Benjamin F. Akers, David M. Ambrose, David W. Sulon

Faculty Publications

In a prior work, the authors proved a global bifurcation theorem for spatially periodic interfacial hydroelastic traveling waves on infinite depth, and computed such traveling waves. The formulation of the traveling wave problem used both analytically and numerically allows for waves with multi-valued height. The global bifurcation theorem required a one-dimensional kernel in the linearization of the relevant mapping, but for some parameter values, the kernel is instead two-dimensional. In the present work, we study these cases with two-dimensional kernels, which occur in resonant and non-resonant variants. We apply an implicit function theorem argument to prove existence of traveling waves …


Improving Optimization Of Convolutional Neural Networks Through Parameter Fine-Tuning, Nicholas C. Becherer, John M. Pecarina, Scott L. Nykl, Kenneth M. Hopkinson Aug 2019

Improving Optimization Of Convolutional Neural Networks Through Parameter Fine-Tuning, Nicholas C. Becherer, John M. Pecarina, Scott L. Nykl, Kenneth M. Hopkinson

Faculty Publications

In recent years, convolutional neural networks have achieved state-of-the-art performance in a number of computer vision problems such as image classification. Prior research has shown that a transfer learning technique known as parameter fine-tuning wherein a network is pre-trained on a different dataset can boost the performance of these networks. However, the topic of identifying the best source dataset and learning strategy for a given target domain is largely unexplored. Thus, this research presents and evaluates various transfer learning methods for fine-grained image classification as well as the effect on ensemble networks. The results clearly demonstrate the effectiveness of parameter …


Plasma Spectroscopy Of Titanium Monoxide For Characterization Of Laser Ablation, Todd A. Van Woerkom, Glen P. Perram, Christian G. Parigger, Brian D. Dolasinski, Charles D. Phelps, Patrick A. Berry Aug 2019

Plasma Spectroscopy Of Titanium Monoxide For Characterization Of Laser Ablation, Todd A. Van Woerkom, Glen P. Perram, Christian G. Parigger, Brian D. Dolasinski, Charles D. Phelps, Patrick A. Berry

Faculty Publications

Ablation of titanium wafers in air is accomplished with 60 µs pulsed, 2.94 µm laser radiation. Titanium monoxide spectra are measured in the wavelength range of 500 nm to 750 nm, and molecular signatures include bands of the C3 Δ → X3 Δ α, B3 Π → X3 Δ γ', and A3 Φ → X3 Δ γ transitions. The spatially and temporally averaged spectra appear to be in qualitative agreement with previous temporally resolved studies that employed shorter wavelengths and shorter pulse durations than utilized in this work. The background signals in the current study are possibly due to particulate …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


Nuclear Engineering At The Air Force Institute Of Technology: A Unique Graduate School Experience For A Unique Set Of Students, Michael B. Shattan Jul 2019

Nuclear Engineering At The Air Force Institute Of Technology: A Unique Graduate School Experience For A Unique Set Of Students, Michael B. Shattan

Faculty Publications

In August 2018, the Air University Commander formed a task force to review the Air Force’s Science, Technology, Engineering, and Mathematics (STEM) graduate education programs that are delivered and administered through the Air Force Institute of Technology (AFIT). The study was rooted in strategies to support the 2018 National Defense Strategy, and provided the necessary technologically equipped personnel for the 21st century. The study was commonly referred to as “reimagining AFIT”. Several themes emerged from the study, which include reaching a broader community of Airmen through alternate educational modes (e.g. distance learning, short course etc.), forming strategic educational and research …


Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt Jun 2019

Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt

Faculty Publications

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate …


Generating Dark And Antidark Beams Using The Genuine Cross-Spectral Density Function Criterion, Milo W. Hyde Iv, Svetlana Avramov-Zamurovic Jun 2019

Generating Dark And Antidark Beams Using The Genuine Cross-Spectral Density Function Criterion, Milo W. Hyde Iv, Svetlana Avramov-Zamurovic

Faculty Publications

In this work, we demonstrate how to generate dark and antidark beams—diffraction-free partially coherent sources—using the genuine cross-spectral density function criterion. These beams have been realized in prior work using the source’s coherent-mode representation and by transforming a J0-Bessel correlated partially coherent source using a wavefront-folding interferometer. We generalize the traditional dark and antidark beams to produce higher-order sources, which have not been realized. We simulate the generation of these beams and compare the results to the corresponding theoretical predictions. The simulated results are found to be in excellent agreement with theory, thus validating our analysis. We discuss …


Statistical Viability Analysis Of United States Air Force Estimating Cost Factor For Sustainable Construction, Philip A. Ramsey, Diedrich Prigge, Torrey J. Wagner, Alfred E. Thal Jr. May 2019

Statistical Viability Analysis Of United States Air Force Estimating Cost Factor For Sustainable Construction, Philip A. Ramsey, Diedrich Prigge, Torrey J. Wagner, Alfred E. Thal Jr.

Faculty Publications

Varying legislation and executive orders coupled with needs for energy resiliency have led the United States Air Force (USAF) to pursue sustainable construction. However, the limited understanding of initial costs to implement these changes have contributed to poor project cost estimating, resulting in 62 percent of USAF projects experiencing more than 5 percent cost growth. After reviewing 1628 USAF Military Construction (MILCON) construction projects in 922 category codes (CATCODEs), a twotailed t-test for populations with unequal variance was accomplished on the final normalized contract cost for 340 projects in 16 CATCODEs executed between 2002 and 2017. This analysis provides a …


Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams May 2019

Using Wind And Hydro Power To Sustain The Off-Grid Power Supply For A 50' Cruising Sailboat, Keisha Meyer, Torrey J. Wagner, Jada Williams

Faculty Publications

Cruising sailboats operate with a power requirement modest enough to operate mostly or completely on renewable energy technology sources. Cruisers without renewable energy systems use the vessel’s diesel engine to charge the boat’s batteries; if the systems are operated at anchor, this dramatically decreases the time before the engine needs major overhaul. System users estimate a diesel engine can run approximately 8,000 hours underway before needing major overhaul, whereas operating 500 hours at anchor produces similar wear and tear on engine pistons. Although renewable energy systems have a high initial capital cost, these systems can provide the vessel’s electrical system …


Ergodicity For The 3d Stochastic Navier-Stokes Equations Perturbed By Lévy Noise, Manil T. Mohan, K. Sakthivel, Sivaguru S. Sritharan May 2019

Ergodicity For The 3d Stochastic Navier-Stokes Equations Perturbed By Lévy Noise, Manil T. Mohan, K. Sakthivel, Sivaguru S. Sritharan

Faculty Publications

In this work we construct a Markov family of martingale solutions for 3D stochastic Navier–Stokes equations (SNSE) perturbed by Lévy noise with periodic boundary conditions. Using the Kolmogorov equations of integrodifferential type associated with the SNSE perturbed by Lévy noise, we construct a transition semigroup and establish the existence of a unique invariant measure. We also show that it is ergodic and strongly mixing.
Abstract © Wiley.


Finding The Symmetry Group Of An Lp With Equality Constraints And Its Application To Classifying Orthogonal Arrays, Andrew J. Geyer, Dursun A. Bulutoglu, Kenneth J. Ryan May 2019

Finding The Symmetry Group Of An Lp With Equality Constraints And Its Application To Classifying Orthogonal Arrays, Andrew J. Geyer, Dursun A. Bulutoglu, Kenneth J. Ryan

Faculty Publications

Excerpt: For a given linear program (LP) a permutation of its variables that sends feasible points to feasible points and preserves the objective function value of each of its feasible points is a symmetry of the LP. The set of all symmetries of an LP, denoted by GLP, is the symmetry group of the LP. Margot (2010) described a method for computing a subgroup of the symmetry group GLP of an LP. This method computes GLP when the LP has only non-redundant inequalities and its feasible set satisfies no equality constraints.


The Lowest-Energy Isomer Of C2si2h4 Is A Bridged Ring: Reinterpretation Of The Spectroscopic Data Based On Dft And Coupled-Cluster Calculations, Jesse J. Lutz, Larry W. Burggraf Apr 2019

The Lowest-Energy Isomer Of C2si2h4 Is A Bridged Ring: Reinterpretation Of The Spectroscopic Data Based On Dft And Coupled-Cluster Calculations, Jesse J. Lutz, Larry W. Burggraf

Faculty Publications

The lowest-energy isomer of C2Si2H4 is determined by high-accuracy ab initio calculations to be the bridged four-membered ring 1,2-didehydro-1,3-disilabicyclo[1.1.0]butane (1), contrary to prior theoretical and experimental studies favoring the three-member ring silylsilacyclopropenylidene (2). These and eight other low-lying minima on the potential energy surface are characterized and ordered by energy using the CCSD(T) method with complete basis set extrapolation, and the resulting benchmark-quality set of relative isomer energies is used to evaluate the performance of several comparatively inexpensive approaches based on many-body perturbation theory and density functional theory (DFT). Double-hybrid DFT methods are found to …