Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Lightning Forecast From Chaotic And Incomplete Time Series Using Wavelet De-Noising And Spatiotemporal Kriging, Jared K. Nystrom, Raymond Hill, Andrew J. Geyer, Joseph J. Pignatiello Jr., Eric Chicken Oct 2023

Lightning Forecast From Chaotic And Incomplete Time Series Using Wavelet De-Noising And Spatiotemporal Kriging, Jared K. Nystrom, Raymond Hill, Andrew J. Geyer, Joseph J. Pignatiello Jr., Eric Chicken

Faculty Publications

Purpose: Present a method to impute missing data from a chaotic time series, in this case lightning prediction data, and then use that completed dataset to create lightning prediction forecasts.

Design/Methodology/Approach: Using the technique of spatiotemporal kriging to estimate data that is autocorrelated but in space and time. Using the estimated data in an imputation methodology completes a dataset used in lighting prediction.

Findings: The techniques provided prove robust to the chaotic nature of the data, and the resulting time series displays evidence of smoothing while also preserving the signal of interest for lightning prediction.

Abstract © Emerald Publishing …


Improving Data-Driven Infrastructure Degradation Forecast Skill With Stepwise Asset Condition Prediction Models, Kurt R. Lamm, Justin D. Delorit, Michael N. Grussing, Steven J. Schuldt Aug 2022

Improving Data-Driven Infrastructure Degradation Forecast Skill With Stepwise Asset Condition Prediction Models, Kurt R. Lamm, Justin D. Delorit, Michael N. Grussing, Steven J. Schuldt

Faculty Publications

Organizations with large facility and infrastructure portfolios have used asset management databases for over ten years to collect and standardize asset condition data. Decision makers use these data to predict asset degradation and expected service life, enabling prioritized maintenance, repair, and renovation actions that reduce asset life-cycle costs and achieve organizational objectives. However, these asset condition forecasts are calculated using standardized, self-correcting distribution models that rely on poorly-fit, continuous functions. This research presents four stepwise asset condition forecast models that utilize historical asset inspection data to improve prediction accuracy: (1) Slope, (2) Weighted Slope, (3) Condition-Intelligent Weighted Slope, and (4) …


Forecasting Country Conflict Using Statistical Learning Methods, Sarah Neumann, Darryl K. Ahner, Raymond R. Hill Jun 2022

Forecasting Country Conflict Using Statistical Learning Methods, Sarah Neumann, Darryl K. Ahner, Raymond R. Hill

Faculty Publications

Purpose — This paper aims to examine whether changing the clustering of countries within a United States Combatant Command (COCOM) area of responsibility promotes improved forecasting of conflict. Design/methodology/approach — In this paper statistical learning methods are used to create new country clusters that are then used in a comparative analysis of model-based conflict prediction. Findings — In this study a reorganization of the countries assigned to specific areas of responsibility are shown to provide improvements in the ability of models to predict conflict. Research limitations/implications — The study is based on actual historical data and is purely data driven. …


Cost Estimating Using A New Learning Curve Theory For Non-Constant Production Rates, Dakotah Hogan, John J. Elshaw, Clay M. Koschnick, Jonathan D. Ritschel, Adedeji B. Badiru, Shawn M. Valentine Oct 2020

Cost Estimating Using A New Learning Curve Theory For Non-Constant Production Rates, Dakotah Hogan, John J. Elshaw, Clay M. Koschnick, Jonathan D. Ritschel, Adedeji B. Badiru, Shawn M. Valentine

Faculty Publications

Traditional learning curve theory assumes a constant learning rate regardless of the number of units produced. However, a collection of theoretical and empirical evidence indicates that learning rates decrease as more units are produced in some cases. These diminishing learning rates cause traditional learning curves to underestimate required resources, potentially resulting in cost overruns. A diminishing learning rate model, namely Boone’s learning curve, was recently developed to model this phenomenon. This research confirms that Boone’s learning curve systematically reduced error in modeling observed learning curves using production data from 169 Department of Defense end-items. However, high amounts of variability in …