Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2023

Deep Learning

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Physical Sciences and Mathematics

Smart Applications And Resource Management In Internet Of Things, Zeinab Akhavan Dec 2023

Smart Applications And Resource Management In Internet Of Things, Zeinab Akhavan

Computer Science ETDs

Internet of Things (IoT) technologies are currently the principal solutions driving smart cities. These new technologies such as Cyber Physical Systems, 5G and data analytic have emerged to address various cities' infrastructure issues ranging from transportation and energy management to healthcare systems. An IoT setting primarily consists of a wide range of users and devices as a massive network interacting with different layers of the city infrastructure resulting in generating sheer volume of data to enable smart city services. The goal of smart city services is to create value for the entire ecosystem, whether this is health, education, transportation, energy, …


Utilizing Multitask Transfer Learning For Sonographic Rheumatoid Arthritis Synovitis Grading, Jordan Marie Claire Sanders Dec 2023

Utilizing Multitask Transfer Learning For Sonographic Rheumatoid Arthritis Synovitis Grading, Jordan Marie Claire Sanders

Doctoral Dissertations and Master's Theses

Classifying the four sonographic Rheumatoid Arthritis (RA) synovitis grades (Grade 0, Grade 1, Grade 2, and Grade 3) is a difficult problem due to the complexity of the relevant markers. Therefore, the current research proposes a Multitask Transfer Learning (MTL) framework for sonographic RA synovitis grading of Ultrasound (US) images in Brightness mode (B-Mode) and Power Doppler mode.

In the medical community, the lack of reliability of scoring these images has been an issue and reason for concern for doctors and other medical practitioners. The human/machine variability across the acquisition procedure of these US images creates an additional challenge that …


Deep Learning Approaches For Chaotic Dynamics And High-Resolution Weather Simulations In The Us Midwest, Vlada Volyanskaya, Kabir Batra, Shubham Shrivastava Dec 2023

Deep Learning Approaches For Chaotic Dynamics And High-Resolution Weather Simulations In The Us Midwest, Vlada Volyanskaya, Kabir Batra, Shubham Shrivastava

Discovery Undergraduate Interdisciplinary Research Internship

Weather prediction is indispensable across various sectors, from agriculture to disaster forecasting, deeply influencing daily life and work. Recent advancement of AI foundation models for weather and climate predictions makes it possible to perform a large number of predictions in reasonable time to support timesensitive policy- and decision-making. However, the uncertainty quantification, validation, and attribution of these models have not been well explored, and the lack of knowledge can eventually hinder the improvement of their prediction accuracy and precision. Our project is embarking on a two-fold approach leveraging deep learning techniques (LSTM and Transformer) architectures. Firstly, we model the Lorenz …


Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron Dec 2023

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron

Doctoral Dissertations

This work introduces improvements to the stability and generalizability of Cyclic DARTS (CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and evaluation networks concurrently, thereby optimizing the search process by enforcing that the networks produce similar outputs. However, the dissimilarity between the loss functions used by the evaluation networks during the search and retraining phases results in a search-phase evaluation network, a sub-optimal proxy for the final evaluation network utilized during retraining. ICDARTS, a revised algorithm that reformulates the search phase loss functions to ensure …


Context-Aware Temporal Embeddings For Text And Video Data, Ahnaf Farhan Dec 2023

Context-Aware Temporal Embeddings For Text And Video Data, Ahnaf Farhan

Open Access Theses & Dissertations

Recent years have seen an exponential increase in unstructured data, primarily in the form of text, images, and videos. Extracting useful features and trends from large-scale unstructured datasets -- such as news outlets, scientific papers, and videos like security cameras or body cam recordings -- is faced with substantial challenges of volume, scalability, complexity, and semantic understanding. In analyzing trends, comprehending the temporal context is vital for uncovering patterns and narratives that are not apparent from a single video frame or text document. Despite its importance, many existing data mining and machine learning approaches overlook extracting evolutionary contextual features in …


Deep Learning For Photovoltaic Characterization, Adrian Manuel De Luis Garcia Dec 2023

Deep Learning For Photovoltaic Characterization, Adrian Manuel De Luis Garcia

Graduate Theses and Dissertations

This thesis introduces a novel approach to Photovoltaic (PV) installation segmentation by proposing a new architecture to understand and identify PV modules from overhead imagery. Pivotal to this concept is the creation of a new Transformer-based network, S3Former, which focuses on small object characterization and modelling intra- and inter- object differentiation inside an image. Accurate mapping of PV installations is pivotal for understanding their adoption and guiding energy policy decisions. Drawing insights from current Deep Learning methodologies for image segmentation and building upon State-of-the-Art (SOTA) techniques in solar cell mapping, this work puts forth S3Former with the following enhancements: 1. …


Domain Specific Feature Representation Learning For Diverse Temporal Data, Farhan Asif Chowdhury Nov 2023

Domain Specific Feature Representation Learning For Diverse Temporal Data, Farhan Asif Chowdhury

Computer Science ETDs

Humans can leverage domain context to recognize novel patterns and categories based on limited known examples. In contrast, computational learning methods are not adept at exploiting context and require sufficient labeled examples to achieve similar accuracy. Many temporal data domain, for example, seismic signals and oil mining sensor data, requires domain expert annotation, which is both costly and time-consuming. The dependency on training data limits the applicability of machine learning algorithms for domains with limited labeled data. This dissertation aims to address this gap by developing temporal mining algorithms that exploit domain context to learn discriminative feature representation from limited …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Deciphering Trends And Tactics: Data-Driven Techniques For Forecasting Information Spread And Detecting Coordinated Campaigns In Social Media, Kin Wai Ng Lugo Nov 2023

Deciphering Trends And Tactics: Data-Driven Techniques For Forecasting Information Spread And Detecting Coordinated Campaigns In Social Media, Kin Wai Ng Lugo

USF Tampa Graduate Theses and Dissertations

The main objective of this dissertation is to develop models that predict and investigate the spread of information in social media over time. In this context, we consider topics of discussions as the information that spreads. Thus, we are interested in forecasting the number of messages per day in a future interval of time. We take a data-driven approach, in which we compare our results with real datasets from a multitude of socio-political contexts and from multiple social media platforms, specifically, Twitter and YouTube.

We identified a number of challenges related to forecasting social media time series per topic. First, …


Optimizing Uncertainty Quantification Of Vision Transformers In Deep Learning On Novel Ai Architectures, Erik Pautsch, John Li, Silvio Rizzi, George K. Thiruvathukal, Maria Pantoja Nov 2023

Optimizing Uncertainty Quantification Of Vision Transformers In Deep Learning On Novel Ai Architectures, Erik Pautsch, John Li, Silvio Rizzi, George K. Thiruvathukal, Maria Pantoja

Computer Science: Faculty Publications and Other Works

Deep Learning (DL) methods have shown substantial efficacy in computer vision (CV) and natural language processing (NLP). Despite their proficiency, the inconsistency in input data distributions can compromise prediction reliability. This study mitigates this issue by introducing uncertainty evaluations in DL models, thereby enhancing dependability through a distribution of predictions. Our focus lies on the Vision Transformer (ViT), a DL model that harmonizes both local and global behavior. We conduct extensive experiments on the ImageNet-1K dataset, a vast resource with over a million images across 1,000 categories. ViTs, while competitive, are vulnerable to adversarial attacks, making uncertainty estimation crucial for …


Evaluating Methods For Improving Dnn Robustness Against Adversarial Attacks, Laureano Griffin Oct 2023

Evaluating Methods For Improving Dnn Robustness Against Adversarial Attacks, Laureano Griffin

USF Tampa Graduate Theses and Dissertations

Deep learning has become more widespread as advances in the field continue. As aresult, making sure deep learning is safe has become a priority. A seemingly normal image with intentional pixel changes can cause a well-trained model to misclassify the image with high confidence. Those kinds of images are called adversarial attacks. Adversarial training has been developed to defend against adversarial attacks. This thesis evaluates different adversarial training methods against a variety of adversarial attacks. The key metrics for evaluation are classification accuracy and training time. This thesis also experiments with an improvement on an existing adversarial training method, the …


Semantic Lung Segmentation From Chest X-Ray Images Using Seg-Net Deep Cnn Model, Dathar Abas Hasan, Umed Hayder Jader Oct 2023

Semantic Lung Segmentation From Chest X-Ray Images Using Seg-Net Deep Cnn Model, Dathar Abas Hasan, Umed Hayder Jader

Polytechnic Journal

Implementing an accurate image segmentation to extract the lung shape from X-ray images is a vital step in designing a CAD system that diagnoses various types of chest diseases. Lung segmentation is a complex process due to the blurred regions that separate the lung area and the rest of the image. The conventional image segmentation techniques do not meet the ambitions to achieve precise lung segmentation. In this paper, we utilized the Seg-Net semantic segmentation model as a practical approach to distinguish the lung region pixels in X-ray images. The model involves an encoder network that extracts the data from …


Flacgec: A Chinese Grammatical Error Correction Dataset With Fine-Grained Linguistic Annotation, Hanyue Du, Yike Zhao, Qingyuan Tian, Jiani Wang, Lei Wang, Yunshi Lan, Xuesong Lu Oct 2023

Flacgec: A Chinese Grammatical Error Correction Dataset With Fine-Grained Linguistic Annotation, Hanyue Du, Yike Zhao, Qingyuan Tian, Jiani Wang, Lei Wang, Yunshi Lan, Xuesong Lu

Research Collection School Of Computing and Information Systems

Chinese Grammatical Error Correction (CGEC) has been attracting growing attention from researchers recently. In spite of the fact that multiple CGEC datasets have been developed to support the research, these datasets lack the ability to provide a deep linguistic topology of grammar errors, which is critical for interpreting and diagnosing CGEC approaches. To address this limitation, we introduce FlaCGEC, which is a new CGEC dataset featured with fine-grained linguistic annotation. Specifically, we collect raw corpus from the linguistic schema defined by Chinese language experts, conduct edits on sentences via rules, and refine generated samples manually, which results in 10k sentences …


Emotion-Aware Music Recommendation, Hieu Tran, Tuan Le, Anh Do, Tram Vu, Steven Bogaerts, Brian T. Howard Sep 2023

Emotion-Aware Music Recommendation, Hieu Tran, Tuan Le, Anh Do, Tram Vu, Steven Bogaerts, Brian T. Howard

Computer Science Faculty publications

It is common to listen to songs that match one's mood. Thus, an AI music recommendation system that is aware of the user's emotions is likely to provide a superior user experience to one that is unaware. In this paper, we present an emotion-aware music recommendation system. Multiple models are discussed and evaluated for affect identification from a live image of the user. We propose two models: DRViT, which applies dynamic routing to vision transformers, and InvNet50, which uses involution. All considered models are trained and evaluated on the AffectNet dataset. Each model outputs the user's estimated valence and arousal …


Gpachov At Checkthat! 2023: A Diverse Multi-Approach Ensemble For Subjectivity Detection In News Articles, Georgi Pachov, Dimitar Dimitrov, Ivan Koychev, Preslav Nakov Sep 2023

Gpachov At Checkthat! 2023: A Diverse Multi-Approach Ensemble For Subjectivity Detection In News Articles, Georgi Pachov, Dimitar Dimitrov, Ivan Koychev, Preslav Nakov

Natural Language Processing Faculty Publications

The wide-spread use of social networks has given rise to subjective, misleading, and even false information on the Internet. Thus, subjectivity detection can play an important role in ensuring the objectiveness and the quality of a piece of information. This paper presents the solution built by the Gpachov team for the CLEF-2023 CheckThat! lab Task 2 on subjectivity detection. Three different research directions are explored. The first one is based on fine-tuning a sentence embeddings encoder model and dimensionality reduction. The second one explores a sample-efficient few-shot learning model. The third one evaluates fine-tuning a multilingual transformer on an altered …


Optimization And Application Of Graph Neural Networks, Shuo Zhang Sep 2023

Optimization And Application Of Graph Neural Networks, Shuo Zhang

Dissertations, Theses, and Capstone Projects

Graph Neural Networks (GNNs) are widely recognized for their potential in learning from graph-structured data and solving complex problems. However, optimal performance and applicability of GNNs have been an open-ended challenge. This dissertation presents a series of substantial advances addressing this problem. First, we investigate attention-based GNNs, revealing a critical shortcoming: their ignorance of cardinality information that impacts their discriminative power. To rectify this, we propose Cardinality Preserved Attention (CPA) models that can be applied to any attention-based GNNs, which exhibit a marked improvement in performance. Next, we introduce the Directional Node Pair (DNP) descriptor and the Robust Molecular Graph …


Out-Of-Distribution Generalization Of Deep Learning To Illuminate Dark Protein Functional Space, Tian Cai Sep 2023

Out-Of-Distribution Generalization Of Deep Learning To Illuminate Dark Protein Functional Space, Tian Cai

Dissertations, Theses, and Capstone Projects

Dark protein illumination is a fundamental challenge in drug discovery where majority human proteins are understudied, i.e. with only known protein sequence but no known small molecule binder. It's a major road block to enable drug discovery paradigm shift from single-targeted which looks to identify a single target and design drug to regulate the single target to multi-targeted in a Systems Pharmacology perspective. Diseases such as Alzheimer's and Opioid-Use-Disorder plaguing millions of patients call for effective multi-targeted approach involving dark proteins. Using limited protein data to predict dark protein property requires deep learning systems with OOD generalization capacity. Out-of-Distribution (OOD) …


Learning Representations For Effective And Explainable Software Bug Detection And Fixing, Yi Li Aug 2023

Learning Representations For Effective And Explainable Software Bug Detection And Fixing, Yi Li

Dissertations

Software has an integral role in modern life; hence software bugs, which undermine software quality and reliability, have substantial societal and economic implications. The advent of machine learning and deep learning in software engineering has led to major advances in bug detection and fixing approaches, yet they fall short of desired precision and recall. This shortfall arises from the absence of a 'bridge,' known as learning code representations, that can transform information from source code into a suitable representation for effective processing via machine and deep learning.

This dissertation builds such a bridge. Specifically, it presents solutions for effectively learning …


Countnet3d: A 3d Computer Vision Approach To Infer Counts Of Occluded Objects With Quantified Uncertainty, Stephen W. Nelson Aug 2023

Countnet3d: A 3d Computer Vision Approach To Infer Counts Of Occluded Objects With Quantified Uncertainty, Stephen W. Nelson

Theses and Dissertations

3D scene understanding is an important problem that has experienced great progress in recent years, in large part due to the development of state-of-the-art methods for 3D object detection. However, the performance of 3D object detectors can suffer in scenarios where extreme occlusion of objects is present, or the number of object classes is large. In this paper, we study the problem of inferring 3D counts from densely packed scenes with heterogeneous objects. This problem has applications to important tasks such as inventory management or automatic crop yield estimation. We propose a novel regression-based method, CountNet3D, that uses mature 2D …


Sctiger: A Deep-Learning Method For Inferring Gene Regulatory Networks From Case Versus Control Scrna-Seq Datasets., Madison Dautle, Shaoqiang Zhang, Yong Chen Aug 2023

Sctiger: A Deep-Learning Method For Inferring Gene Regulatory Networks From Case Versus Control Scrna-Seq Datasets., Madison Dautle, Shaoqiang Zhang, Yong Chen

Faculty Scholarship for the College of Science & Mathematics

Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-based method, named scTIGER, for GRN detection by using the co-differential relationships of gene expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming, an attention-based convolutional neural network method and permutation-based significance testing for inferring GRNs among …


Global Cyber Attack Forecast Using Ai Techniques, Nusrat Kabir Samia Aug 2023

Global Cyber Attack Forecast Using Ai Techniques, Nusrat Kabir Samia

Electronic Thesis and Dissertation Repository

The advancement of internet technology and growing involvement in the cyber world have made us prone to cyber-attacks inducing severe damage to individuals and organizations, including financial loss, identity theft, and reputational damage. The rapid emergence and evolution of new networks and new opportunities for businesses and technologies are increasing threats to security vulnerabilities. Hence cyber-crime analysis is one of the wide range applications of Data Mining that can be eventually used to predict and detect crime. However, there are several constraints while analyzing cyber-attacks, which are yet to be resolved for more accurate cyber security inspection.

Although there are …


Predicting Network Failures With Ai Techniques, Chandrika Saha Aug 2023

Predicting Network Failures With Ai Techniques, Chandrika Saha

Electronic Thesis and Dissertation Repository

Network failure is the unintentional interruption of internet services, resulting in widespread client frustration. It is especially true for time-sensitive services in the healthcare industry, smart grid control, and mobility control, among others. In addition, the COVID-19 pandemic has compelled many businesses to operate remotely, making uninterrupted internet access essential. Moreover, Internet Service Providers (ISPs) lose millions of dollars annually due to network failure, which has a negative impact on their businesses. Currently, redundant network equipment is used as a restoration technique to resolve this issue of network failure. This technique requires a strategy for failure identification and prediction to …


Deep Learning-Based Cad System For Predicting The Covid-19 X-Ray Images, Aqeel R. Talib, Hana’ M. Ali Aug 2023

Deep Learning-Based Cad System For Predicting The Covid-19 X-Ray Images, Aqeel R. Talib, Hana’ M. Ali

Karbala International Journal of Modern Science

According to World Health Organization data, Coronavirus (COVID-19) has infected about 660, 378, 145 patients around the world. It is nonetheless difficult for physicians to detect COVID-19 infections out of CT or X-ray radiographs. Thus, several computer-aided diagnosis (CAD) systems based on deep learning and radiographs were developed to detect COVID-19 infections. However, the majority of approaches considered small datasets, which is ineligible to provide diverse COVID-19 radiographs. This work utilizes a massive number of X-ray radiographs, and compared standard CNN, DenseNet-121, and GoogLeNet for isolating COVID-19 infections out from normal and other pneumonia radiographs. The dataset in this work …


Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods, Miguel E. Bonilla Jr., Jason Mcdonald, Tamas Toth, Bivin Sadler Aug 2023

Traditional Vs Machine Learning Approaches: A Comparison Of Time Series Modeling Methods, Miguel E. Bonilla Jr., Jason Mcdonald, Tamas Toth, Bivin Sadler

SMU Data Science Review

In recent years, various new Machine Learning and Deep Learning algorithms have been introduced, claiming to offer better performance than traditional statistical approaches when forecasting time series. Studies seeking evidence to support the usage of ML/DL over statistical approaches have been limited to comparing the forecasting performance of univariate, linear time series data. This research compares the performance of traditional statistical-based and ML/DL methods for forecasting multivariate and nonlinear time series.


The Impacts Of Transfer Learning For Ungulate Recognition At Sevilleta National Wildlife Refuge, Michael Gurule Aug 2023

The Impacts Of Transfer Learning For Ungulate Recognition At Sevilleta National Wildlife Refuge, Michael Gurule

Geography ETDs

As camera traps have grown in popularity, their utilization has expanded to numerous fields, including wildlife research, conservation, and ecological studies. The information gathered using this equipment gives researchers a precise and comprehensive understanding about the activities of animals in their natural environments. For this type of data to be useful, camera trap images must be labeled so that the species in the images can be classified and counted. This has typically been done by teams of researchers and volunteers, and it can be said that the process is at best time-consuming. With recent developments in deep learning, the process …


Generalizing Deep Learning Methods For Particle Tracing Using Transfer Learning, Shubham Gupta Aug 2023

Generalizing Deep Learning Methods For Particle Tracing Using Transfer Learning, Shubham Gupta

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Particle tracing is a very important method for scientific visualization of vector fields, but it is computationally expensive. Deep learning can be used to speed up particle tracing, but existing deep learning models are domain-specific. In this work, we present a methodology to generalize the use of deep learning for particle tracing using transfer learning. We demonstrate the performance of our approach through a series of experimental studies that address the most common simulation design scenarios: varying time span, Reynolds number, and problem geometry. The results show that our methodology can be effectively used to generalize and accelerate the training …


Geospatial Wildfire Risk Prediction Using Deep Learning, Abner Alberto Benavides Aug 2023

Geospatial Wildfire Risk Prediction Using Deep Learning, Abner Alberto Benavides

Electronic Theses, Projects, and Dissertations

This report introduces a thorough analysis of wildfire prediction using satellite imagery by applying deep learning techniques. To find wildfire-prone geographical data, we use U-Net, a convolutional neural network known for its effectiveness in biomedical image segmentation. The input to the model is the Sentinel-2 multispectral images to supply a complete view of the terrain features.

We evaluated the wildfire risk prediction model’s performance using several metrics. The model showed high accuracy, with a weighted average F1 score of 0.91 and an AUC-ROC score of 0.972. These results suggest that the model is exceptionally good at predicting the location of …


Visual Complexity Of The Time-Frequency Image Pinpoints The Epileptogenic Zone: An Unsupervised Deep-Learning Tool To Analyze Interictal Intracranial Eeg, Sarvagya Gupta Aug 2023

Visual Complexity Of The Time-Frequency Image Pinpoints The Epileptogenic Zone: An Unsupervised Deep-Learning Tool To Analyze Interictal Intracranial Eeg, Sarvagya Gupta

Graduate Masters Theses

Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, continues to pose significant challenges in diagnosis and treatment, particularly among children. Despite substantial advancements in medical technology and treatment modalities, localization of the part of brain that causes seizures (Epileptogenic Zone) remains a difficult task. Intracranial EEG (iEEG) is often used to estimate the epileptogenic zone (EZ) in children with drugresistant epilepsy (DRE) and target it during surgery. Conventionally, iEEG signals are inspected in the time domain by human experts aiming to locate epileptiform activity.

Visual scrutiny of the iEEG time-frequency (TF) images can be an alternative way to review …


Invading The Integrity Of Deep Learning (Dl) Models Using Lsb Perturbation & Pixel Manipulation, Ashraful Tauhid Aug 2023

Invading The Integrity Of Deep Learning (Dl) Models Using Lsb Perturbation & Pixel Manipulation, Ashraful Tauhid

Theses and Dissertations

The use of deep learning (DL) models for solving classification and recognition-related problems are expanding at an exponential rate. However, these models are computationally expensive both in terms of time and resources. This imposes an entry barrier for low-profile businesses and scientific research projects with limited resources. Therefore, many organizations prefer to use fully outsourced trained models, cloud computing services, pre-trained models are available for download and transfer learning. This ubiquitous adoption of DL has unlocked numerous opportunities but has also brought forth potential threats to its prospects. Among the security threats, backdoor attacks and adversarial attacks have emerged as …


Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi Aug 2023

Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi

All Theses

The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To …