Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

An Integrated Framework For Modeling And Predicting Spatiotemporal Phenomena In Urban Environments, Tuc Viet Le Nov 2017

An Integrated Framework For Modeling And Predicting Spatiotemporal Phenomena In Urban Environments, Tuc Viet Le

Dissertations and Theses Collection (Open Access)

This thesis proposes a general solution framework that integrates methods in machine learning in creative ways to solve a diverse set of problems arising in urban environments. It particularly focuses on modeling spatiotemporal data for the purpose of predicting urban phenomena. Concretely, the framework is applied to solve three specific real-world problems: human mobility prediction, trac speed prediction and incident prediction. For human mobility prediction, I use visitor trajectories collected a large theme park in Singapore as a simplified microcosm of an urban area. A trajectory is an ordered sequence of attraction visits and corresponding timestamps produced by a visitor. …


Modeling Trajectories With Recurrent Neural Networks, Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, Wei Wang Aug 2017

Modeling Trajectories With Recurrent Neural Networks, Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, Wei Wang

Research Collection School Of Computing and Information Systems

Modeling trajectory data is a building block for many smart-mobility initiatives. Existing approaches apply shallow models such as Markov chain and inverse reinforcement learning to model trajectories, which cannot capture the long-term dependencies. On the other hand, deep models such as Recurrent Neura lNetwork (RNN) have demonstrated their strength of modeling variable length sequences. However, directly adopting RNN to model trajectories is not appropriate because of the unique topological constraints faced by trajectories. Motivated by these findings, we design two RNN-based models which can make full advantage of the strength of RNN to capture variable length sequence and meanwhile to …


Generic Online Learning For Partial Visible & Dynamic Environment With Delayed Feedback, Behrooz Shahriari May 2017

Generic Online Learning For Partial Visible & Dynamic Environment With Delayed Feedback, Behrooz Shahriari

Master's Projects

Reinforcement learning (RL) has been applied to robotics and many other domains which a system must learn in real-time and interact with a dynamic environment. In most studies the state- action space that is the key part of RL is predefined. Integration of RL with deep learning method has however taken a tremendous leap forward to solve novel challenging problems such as mastering a board game of Go. The surrounding environment to the agent may not be fully visible, the environment can change over time, and the feedbacks that agent receives for its actions can have a fluctuating delay. In …


An Efficient Approach To Model-Based Hierarchical Reinforcement Learning, Zhuoru Li, Akshay Narayan, Tze-Yun Leong Feb 2017

An Efficient Approach To Model-Based Hierarchical Reinforcement Learning, Zhuoru Li, Akshay Narayan, Tze-Yun Leong

Research Collection School Of Computing and Information Systems

We propose a model-based approach to hierarchical reinforcement learning that exploits shared knowledge and selective execution at different levels of abstraction, to efficiently solve large, complex problems. Our framework adopts a new transition dynamics learning algorithm that identifies the common action-feature combinations of the subtasks, and evaluates the subtask execution choices through simulation. The framework is sample efficient, and tolerates uncertain and incomplete problem characterization of the subtasks. We test the framework on common benchmark problems and complex simulated robotic environments. It compares favorably against the stateof-the-art algorithms, and scales well in very large problems.


Seapot-Rl: Selective Exploration Algorithm For Policy Transfer In Rl, Akshay Narayan, Zhuoru Li, Tze-Yun Leong Feb 2017

Seapot-Rl: Selective Exploration Algorithm For Policy Transfer In Rl, Akshay Narayan, Zhuoru Li, Tze-Yun Leong

Research Collection School Of Computing and Information Systems

We propose a new method for transferring a policy from a source task to a target task in model-based reinforcement learning. Our work is motivated by scenarios where a robotic agent operates in similar but challenging environments, such as hospital wards, differentiated by structural arrangements or obstacles, such as furniture. We address problems that require fast responses adapted from incomplete, prior knowledge of the agent in new scenarios. We present an efficient selective exploration strategy that maximally reuses the source task policy. Reuse efficiency is effected through identifying sub-spaces that are different in the target environment, thus limiting the exploration …


Ai Education: Machine Learning Resources, Todd W. Neller Jan 2017

Ai Education: Machine Learning Resources, Todd W. Neller

Computer Science Faculty Publications

In this column, we focus on resources for learning and teaching three broad categories of machine learning (ML): supervised, unsupervised, and reinforcement learning. In ournext column, we will focus specifically on deep neural network learning resources, so if you have any resource recommendations, please email them to the address above. [excerpt]


Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian Jan 2017

Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian

Publications and Research

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching …