Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

X-Ray Absorption And Emission Studies Of Anodic Titania Nanostructures, Jun Li Dec 2016

X-Ray Absorption And Emission Studies Of Anodic Titania Nanostructures, Jun Li

Electronic Thesis and Dissertation Repository

One-dimensional (1D) TiO2 nanomaterials with ordered structure have been extensively applied in various fields, such as photocatalysts, solar cells, supercapacitors and rechargeable batteries, due to the unique structural and functional properties compared to the disordered nanoparticulate forms. Nevertheless, intrinsic disadvantages of TiO2, such as its large band gap (~3 eV), fast recombination rate of photoexcited electron–hole pairs and insufficient ionic conductivity, severely limit the development of 1D TiO2 nanomaterials for practical applications. To address the above issues, the scope of this thesis focus on the fundamental understandings of the electronic structure of highly ordered TiO2 …


Tunable Magnetism In Metal Adsorbed Fluorinated Nanoporous Graphene, Pankaj Kumar, Vinit Sharma, Fernando A. Reboredo, Li-Ming Yang, Raghani Pushpa Aug 2016

Tunable Magnetism In Metal Adsorbed Fluorinated Nanoporous Graphene, Pankaj Kumar, Vinit Sharma, Fernando A. Reboredo, Li-Ming Yang, Raghani Pushpa

Physics Faculty Publications and Presentations

Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE …


Mechanism Of Ethanol Partial Oxidation Over Titania Supported Vanadia Catalysts: Geometric And Electronic Structure Consequences On Reaction Kinetics, Dongmin Yun Aug 2016

Mechanism Of Ethanol Partial Oxidation Over Titania Supported Vanadia Catalysts: Geometric And Electronic Structure Consequences On Reaction Kinetics, Dongmin Yun

Electronic Thesis and Dissertation Repository

Supported vanadium oxide catalysts (VOx) are used for a wide range of industrial processes. A significant amount of research has been carried on this specific system with the aim to identify the critical parameters involved in catalytic activity. The results on this relative large body of research indicate that the catalyst support plays a critical role in determining the catalytic activity of vanadia and the use of titanium dioxide as support renders a catalyst with superior activity. Studies on supported vanadia on titanium oxide (VOx/TiO2) have provided an understanding on support interactions that result …


Communication: Visualization And Spectroscopy Of Defects Induced By Dehydrogenation In Individual Silicon Nanocrystals, Dmitry A. Kislitsyn, Jon M. Mills, Vancho Kocevski, Sheng-Kuei Chiu, William J.I. Debenedetti, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin Jun 2016

Communication: Visualization And Spectroscopy Of Defects Induced By Dehydrogenation In Individual Silicon Nanocrystals, Dmitry A. Kislitsyn, Jon M. Mills, Vancho Kocevski, Sheng-Kuei Chiu, William J.I. Debenedetti, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin

Chemistry Faculty Publications and Presentations

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111)surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the …


A New Set Of Potential Energy Surfaces For Hco: Influence Of Renner-Teller Coupling On The Bound And Resonance Vibrational States, Steve Alexandre Ndengué, Richard Dawes, Hua Guo Jun 2016

A New Set Of Potential Energy Surfaces For Hco: Influence Of Renner-Teller Coupling On The Bound And Resonance Vibrational States, Steve Alexandre Ndengué, Richard Dawes, Hua Guo

Chemistry Faculty Research & Creative Works

It is commonly understood that the Renner-Teller effect can strongly influence the spectroscopy of molecules through coupling of electronic states. Here we investigate the vibrational bound states and low-lying resonances of the formyl radical treating the Renner-Teller coupled X2A' and Ã2A" states using the MultiConfiguration Time Dependent Hartree (MCTDH) method. The calculations were performed using the improved relaxation method for the bound states and a recently published extension to compute resonances. A new set of accurate global potential energy surfaces were computed at the explicitly correlated multireference configuration interaction (MRCI-F12) level and yielded remarkably close agreement with experiment in this …


Hallmarks Of The Mott-Metal Crossover In The Hole-Doped Pseudospin-1/2 Mott Insulator Sr2Iro4, Yue Cao, Qiang Wang, Justin A. Waugh, Theodore J. Reber, Haoxiang Li, Xiaoqing Zhou, Stephen Parham, S. -R. Park, Nicholas C. Plumb, Eli Rotenberg, Aaron Bostwick, Jonathan D. Denlinger, Tongfei Qi, Michael A. Hermele, Gang Cao, Daniel S. Dessau Apr 2016

Hallmarks Of The Mott-Metal Crossover In The Hole-Doped Pseudospin-1/2 Mott Insulator Sr2Iro4, Yue Cao, Qiang Wang, Justin A. Waugh, Theodore J. Reber, Haoxiang Li, Xiaoqing Zhou, Stephen Parham, S. -R. Park, Nicholas C. Plumb, Eli Rotenberg, Aaron Bostwick, Jonathan D. Denlinger, Tongfei Qi, Michael A. Hermele, Gang Cao, Daniel S. Dessau

Physics and Astronomy Faculty Publications

The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed …


On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu Apr 2016

On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu

Evgeny Tsymbal Publications

Electronic structures for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectra shape and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states has not changed, the spectra are sensitive to the changes in the local environments of the Fe3+ and Lu …


Mapping Of Defects In Individual Silicon Nanocrystals Using Real- Space Spectroscopy, Dmitry A. Kislitsyn, Vancho Kocevski, Jon M. Mills, Sheng-Kuei Chiu, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin Mar 2016

Mapping Of Defects In Individual Silicon Nanocrystals Using Real- Space Spectroscopy, Dmitry A. Kislitsyn, Vancho Kocevski, Jon M. Mills, Sheng-Kuei Chiu, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin

Chemistry Faculty Publications and Presentations

The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us …


Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz Jan 2016

Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz

Open Access Theses & Dissertations

Advances in high performance computing (HPC) have provided a way to treat large, computationally demanding tasks using thousands of processors. With the development of more powerful HPC architectures, the need to create efficient and scalable code has grown more important. Electronic structure calculations are valuable in understanding experimental observations and are routinely used for new materials predictions. For the electronic structure calculations, the memory and computation time are proportional to the number of atoms. Memory requirements for these calculations scale as N2, where N is the number of atoms. While the recent advances in HPC offer platforms with large numbers …