Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Studying Nanoparticle/Cell And Nanoparticle/Biosurface Interaction With Mass Spectrometry, Singyuk Hou Nov 2015

Studying Nanoparticle/Cell And Nanoparticle/Biosurface Interaction With Mass Spectrometry, Singyuk Hou

Masters Theses

Nanoparticles (NPs) have been used widely in various fields ranging from biomedical applications to life science due to their highly tunable properties. It is essential to understanding how NPs interact with biological systems of interest, therefore, analytical platforms to efficiently track NPs from cell to animal level are essential. In this thesis, laser desorption ionization mass spectrometry (LDI-MS) and inductively-coupled plasma mass spectrometry (ICP-MS) has been developed and applied to quantify NP/cell and NP/biological surface interactions. These two methods provide fast, label-free and quantitative analysis. New capability of LDI-MS to differentiate cell surface-bound and internalized NPs were established and ICP-MS …


Synthesis, Characterization And Ferroelectric Properties Of Ln-Type Znsno3 Nanostructures, Corisa Kons Nov 2015

Synthesis, Characterization And Ferroelectric Properties Of Ln-Type Znsno3 Nanostructures, Corisa Kons

USF Tampa Graduate Theses and Dissertations

With increasing focus on the ill health and environmental effects of lead there is a greater push to develop Pb-free devices and materials. To this extent, ecofriendly and earth abundant LiNbO3-type ZnSnO3, a derivative of the ABO3 perovskite structure, has a high theoretically predicted polarization making it an excellent choice as a suitable alternative to lead based material such as PZT. In this work we present a novel synthesis procedure for the growth of various ZnSnO3 nanostructures by combined physical/chemical processes. Various ZnSnO3 nanostructures of different dimensions were grown from a ZnO:Al template …


Strong Resistance To Bending Observed For Nanoparticle Membranes, Yifan Wang, Jianhui Liao, Sean P. Mcbride, Efi Efrati, Xiao-Min Lin, Heinrich M. Jaeger Aug 2015

Strong Resistance To Bending Observed For Nanoparticle Membranes, Yifan Wang, Jianhui Liao, Sean P. Mcbride, Efi Efrati, Xiao-Min Lin, Heinrich M. Jaeger

Physics Faculty Research

We demonstrate how gold nanoparticle monolayers can be curled up into hollow scrolls that make it possible to extract both bending and stretching moduli from indentation by atomic force microscopy. We find a bending modulus that is 2 orders of magnitude larger than predicted by standard continuum elasticity, an enhancement we associate with nonlocal microstructural constraints. This finding opens up new opportunities for independent control of resistance to bending and stretching at the nanoscale.


The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith Jul 2015

The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith

Theses and Dissertations

Material science is an interdisciplinary area of research, which in part, designs and characterizes new materials. Research is concerned with synthesis, structure, properties, and performance of materials. Discoveries in materials science have significant impact on future technologies, especially in nano-scale applications where the physical properties of nanomaterials are significantly different than their bulk counterparts. The work presented here discusses the use of ferritin, a hollow sphere-like biomolecule, which forms metal oxo-hydride nanoparticles inside its protein shell for uses as a bio-inorganic material.Ferritin is capable of forming and sequestering 8 nm metal-oxide nanoparticles within its 2 nm thick protein shell. A …


Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland Jun 2015

Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland

Theses and Dissertations

A method was found for creating ordered nanoparticles whose size and theoretical order-disorder temperature are ideal for study in the TEM. Specifically FePt, NiPt, FeNiPt and AuCu nanoparticles were studied. We were able to show how a nanoparticle's size affects its order-disorder temperature (Tod). When the particles were around 6 nm in diameter there was a shift downward of the Tod of 10-15 percent compared to the bulk. While particles around 10 nm in diameter experienced a downward shift of 0-6 percent compared to the bulk. One can approximate that particles less than 10-15 nm in diameter would show significant …


Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder May 2015

Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder

Doctoral Dissertations

Heterogeneous catalysts are responsible for billions of dollars of industrial output and have a profound, if often understated, effect on our everyday lives. New catalyst technologies and methods to enhance existing catalysts are essential to meeting consumer demands and overcoming environmental concerns. This dissertation focuses on the development of catalysts for low temperature carbon monoxide oxidation. CO [carbon monoxide] oxidation is often used as a probe reaction to test overall oxidation activity of a given catalyst and is an important reaction in the elimination of toxic pollutants from automotive exhaust streams. The work included here presents three new heterogeneous catalysts …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Impact Of Size, Secondary Structure, And Counterions On The Binding Of Small Ribonucleic Acids To Layered Double Hydroxide Nanoparticles, B. V. Rodriguez, J. Pescador, N. Pollok, G. W. Beall, Corina Maeder, L. K. Lewis Jan 2015

Impact Of Size, Secondary Structure, And Counterions On The Binding Of Small Ribonucleic Acids To Layered Double Hydroxide Nanoparticles, B. V. Rodriguez, J. Pescador, N. Pollok, G. W. Beall, Corina Maeder, L. K. Lewis

Chemistry Faculty Research

Use of ribonucleic acid (RNA) interference to regulate protein expression has become an important research topic and gene therapy tool, and therefore, finding suitable vehicles for delivery of small RNAs into cells is of crucial importance. Layered double metal hydroxides such as hydrotalcite (HT) have shown great promise as nonviral vectors for transport of deoxyribose nucleic acid (DNA), proteins, and drugs into cells, but the adsorption of RNAs to these materials has been little explored. In this study, the binding of small RNAs with different lengths and levels of secondary structure to HT nanoparticles has been analyzed and compared to …


Density-Functional Theory+Dynamical Mean-Field Theory Study Of The Magnetic Properties Of Transition-Metal Nanostructures, Alamgir Kabir Jan 2015

Density-Functional Theory+Dynamical Mean-Field Theory Study Of The Magnetic Properties Of Transition-Metal Nanostructures, Alamgir Kabir

Electronic Theses and Dissertations

In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using available codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic moment as compared to that …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …