Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Exploring The Chemistry Of Phosphorus For Photopolymer Applications, Ryan Guterman May 2015

Exploring The Chemistry Of Phosphorus For Photopolymer Applications, Ryan Guterman

Electronic Thesis and Dissertation Repository

Prior to this thesis, phosphorus-containing polymers and photopolymerization represented two distinct, non-overlapping fields of study. This thesis examined the prospect of combining these two approaches to create a system possessing the benefits of both techniques. By exploiting the chemistry of phosphorus, and using photopolymerization as a fabrication method, new materials were developed and assessed for their use in various applications.

Among the many phosphorus compounds that may be used in polymer science, phosphonium salts and primary phosphines were of specific focus. First, highly fluorinated phosphonium monomers were developed to create photopolymerized hydrophobic surfaces. A structure-activity relationship was established, as both …


Electrodeposition Of Al-Mg Alloys From Acidic Alcl3-Emic-Mgcl2 Room Temperature Ionic Liquids, Rostomali M., P. Abbott Andrew, S. Ryder Karl Apr 2015

Electrodeposition Of Al-Mg Alloys From Acidic Alcl3-Emic-Mgcl2 Room Temperature Ionic Liquids, Rostomali M., P. Abbott Andrew, S. Ryder Karl

Journal of Electrochemistry

Electrodeposition of aluminium-magnesium alloys have been carried out onto platinum and copper cathodes from Lewis acidic aluminium(III) chloride-1-ethyl-3-methylimidazolium chloride ionic liquid containing magnesium(II) chloride by constant current and constant potential methods at room temperature. Magnesium content in the deposited alloy increases with increasing MgCl2 concentration in the ionic liquid and with increasing cathodic current density. The influences of various experimental conditions on electrodeposition and the morphology of the electrodeposited layers have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDAX). On increasing the deposition current densities the dense, bright, adherent …


Extraction Of Dna By Magnetic Ionic Liquids: Tunable Solvents For Rapid And Selective Dna Analysis, Kevin D. Clark, Omprakash Nacham, Honglian Yu, Tianhao Li, Melissa M. Yamsek, Donald R. Ronning, Jared L. Anderson Jan 2015

Extraction Of Dna By Magnetic Ionic Liquids: Tunable Solvents For Rapid And Selective Dna Analysis, Kevin D. Clark, Omprakash Nacham, Honglian Yu, Tianhao Li, Melissa M. Yamsek, Donald R. Ronning, Jared L. Anderson

Jared L. Anderson

DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN+][FeCl3Br–]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C122+][NTf2–, FeCl3Br–]) MIL produced higher extraction efficiencies for larger …


Nanoscale Gumbos: Size-Control, Characterization, And Applications As Enantioselective Molecularly Imprinted Polymers And Fluorescent Materials, Suzana Hamdan Jan 2015

Nanoscale Gumbos: Size-Control, Characterization, And Applications As Enantioselective Molecularly Imprinted Polymers And Fluorescent Materials, Suzana Hamdan

LSU Doctoral Dissertations

Nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS) have been introduced into the scientific literature through many analytical, biological, and technological applications. These nanomaterials, referred to as nanoGUMBOS, have been shown to display a number of interesting properties including fluorescence, magnetism, tumor targeting, and optoelectronic properties. Herein, we present major studies on nanoGUMBOS including synthesis and size-control, chiral molecular imprinting in polymers, as well as investigation of optical properties and quantum yield of fluorescent semiconductor-based nanoGUMBOS. Various strategies were introduced for production of well-defined nanoGUMBOS. Specifically, several methods based on sonochemistry, microwave, cyclodextrin, and surfactant-assisted …