Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2013

Carbon

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 34

Full-Text Articles in Physical Sciences and Mathematics

Hydrochemical Investigation Of A Transient Parafluvial Zone Under Drought Conditions, Platte River, Nebraska, Audrey R. Boerner Dec 2013

Hydrochemical Investigation Of A Transient Parafluvial Zone Under Drought Conditions, Platte River, Nebraska, Audrey R. Boerner

Department of Earth and Atmospheric Sciences: Dissertations, Theses, and Student Research

Shallow groundwater (0.5 m -1.2 m deep) beneath a vegetated and non-vegetated fluvial island was observed in the lower Platte River, Nebraska, USA during exceptional summer drought. Over the course of three months, sub-hourly measurements of hydraulic head, and weekly measurements of redox indicators, δ2H, δ18O, and dissolved gases were analyzed together with nitrogen and carbon species from an array of shallow piezometers in the river bed and islands. These data were compared with the same parameters collected from a 15 m-deep riparian borehole. Vertical hydraulic gradients in the island piezometers indicated the vertical component to …


Scanned Ion Beam Therapy For Thoracic Tumors, John Gordon Eley Dec 2013

Scanned Ion Beam Therapy For Thoracic Tumors, John Gordon Eley

Dissertations & Theses (Open Access)

Although frequently cured of Hodgkin lymphoma, adolescents and young adults can develop radiation induced second cancers. These patients could potentially benefit from scanned ion radiotherapy yet likely would require motion mitigation strategies. In theory, four-dimensional (4D) optimization of ion beam fields for individual motion states of respiration can enable superior sparing of healthy tissue near moving targets, compared to other motion mitigation strategies. Furthermore, carbon-ion therapy can sometimes provide greater relative biological effectiveness (RBE) for cell sterilization in a target but nearly equivalent RBE in tissue upstream of the target, compared to proton therapy. Thus, we expected that for some …


The Impact Of Nitrogen Contamination And River Modification On A Mississippi River Floodplain Lake, Indu Karthic, Richard B. Brugam Ph.D., William A. Retzlaff, Kevin Johnson Jul 2013

The Impact Of Nitrogen Contamination And River Modification On A Mississippi River Floodplain Lake, Indu Karthic, Richard B. Brugam Ph.D., William A. Retzlaff, Kevin Johnson

SIUE Faculty Research, Scholarship, and Creative Activity

Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ15N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Analysis stable isotopes of nitrogen from sediment cores using …


Slides: What Does Climate Change Mean For Cold Water Fisheries, Stan Bradshaw Jun 2013

Slides: What Does Climate Change Mean For Cold Water Fisheries, Stan Bradshaw

Water, Climate and Uncertainty: Implications for Western Water Law, Policy, and Management (Summer Conference, June 11-13)

1 page "Abstract" and 8 slides


Microscopic Role Of Carbon On Mgb2 Wire For Critical Current Density Comparable To Nbti, Jung Ho Kim, Sangjun Oh, Yoon-Uk Heo, Satoshi Hata, Hiroaki Kumakura, Akiyoshi Matsumoto, Masatoshi Mitsuhara, Seyong Choi, Yusuke Shimada, Minoru Maeda, Judith Macmanus-Driscoll, S X. Dou Jun 2013

Microscopic Role Of Carbon On Mgb2 Wire For Critical Current Density Comparable To Nbti, Jung Ho Kim, Sangjun Oh, Yoon-Uk Heo, Satoshi Hata, Hiroaki Kumakura, Akiyoshi Matsumoto, Masatoshi Mitsuhara, Seyong Choi, Yusuke Shimada, Minoru Maeda, Judith Macmanus-Driscoll, S X. Dou

Shi Xue Dou

Increasing dissipation-free supercurrent has been the primary issue for practical application of superconducting wires. For magnesium diboride, MgB2, carbon is known to be the most effective dopant to enhance high-field properties. However, the critical role of carbon remains elusive, and also low-field critical current density has not been improved. Here, we have undertaken malic acid doping of MgB2 and find that the microscopic origin for the enhancement of high-field properties is due to boron vacancies and associated stacking faults, as observed by high-resolution transmission electron microscopy and electron energy loss spectroscopy. The carbon from the malic acid almost uniformly encapsulates …


Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou Jun 2013

Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou

Shi Xue Dou

In this paper, we report on a series of SnO2-carbon nano-composites synthesized by in situ spray pyrolysis of a solution of SnCl2·2H2O and sucrose at 700 °C. The process results in super fine nanocrystalline SnO2, which is homogeneously distributed inside the amorphous carbon matrix. The SnO2 was revealed as a structure of broken hollow spheres with porosity on both the inside and outside particle surfaces. This structure promises a highly developed specific surface area. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images revealed the SnO2 crystal size is about 5–15 nm. These composites show a reversible lithium storage …


Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim Jun 2013

Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim

Shi Xue Dou

The transport and magnetic properties of 10 wt % malic acid and 5 wt % nanocarbon doped MgB2 have been studied by measuring the resistivity (p), critical current density (jc), connectivity factor (AF), irreversibility field (Hirr), and upper critical field (Hc2). The pinning mechanisms are studied in terms of the collective pinning model. It was found that both mean free path (δl) and critical temperature (δTc) pinning mechanisms coexist in both doped MgB2. For both the malic acid and nanocarbon doped samples, the temperature dependence of the crossover field, which separates the single vortex and the small bundle pinning regime, …


Nanodielectric Properties Of High Conductivity Carbon-Loaded Polyimide Under Electron-Beam Irradiation, Amberly Evans, J. R. Dennison, Gregory Wilson, Justin Dekany Jun 2013

Nanodielectric Properties Of High Conductivity Carbon-Loaded Polyimide Under Electron-Beam Irradiation, Amberly Evans, J. R. Dennison, Gregory Wilson, Justin Dekany

Posters

Electron irradiation experiments were conducted to investigate the electron transport, charging, discharging, cathodoluminescence and emission properties of high-conductivity carbon-loaded polyimide (Black KaptonTM). We discuss how these results are related to the nanoscale structure of the composite material. Measurements were conducted in an ultrahigh vacuum electron emission test chamber from <40 K to 290 K, using a monoenergetic beam with energies ranging from 3 keV to 25 keV and flux densities from 0.1 nA/cm2 to 100 nA/cm2 to deposit electrons in the material surface layer. Various experiments measured transport and displacement currents to a rear grounded electrode, absolute electron emission yields, absolute electron-induced photon emission yields and photon emission spectra (~250 nm to 1700 nm), and arcing rates and location. Numerous …


The Effect Of Canopy Organization On The Photosynthesis Of Sphagnum, Brian Solinsky Jun 2013

The Effect Of Canopy Organization On The Photosynthesis Of Sphagnum, Brian Solinsky

Honors Theses

With climate change becoming a greater problem the ability of plants to photosynthesize and sequester carbon becomes more important for us to understand. Sphagnum moss stores more than a third of the world’s soil carbon. Much is understood about the physiology of Sphagnum, but what is generally not understood is the effect of variation in canopy organization in Sphagnum: why are they both rough and smooth? This study examined whether different canopy structures influenced how the canopy uses different angles of light for photosynthesis. The first step was modeling photosynthesis in two simulated structures (rough and smooth) as the angle …


Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions, Caleb J. Allpress May 2013

Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions, Caleb J. Allpress

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The work presented in this dissertation has focused on the activation and cleavage of chemical bonds between two carbon atoms. The selective oxidative activation of carbon-carbon bonds is important due to potential applications in the utilization of biomass for fuel production, applications in wastewater treatment and bioremediation, and in developing new reactions for organic synthesis of fine chemicals including pharmaceuticals. Ideally these reactions would be carried out with high atom economy at low temperatures and pressures, and using earth-abundant elements as reagents and catalysts. With these points in mind, nature provides an ideal model framework, carrying out its chemistry at …


Nanostructured Carbon Electrodes, Gordon G. Wallace, Jun Chen, Dan Li, Simon E. Moulton, Joselito M. Razal Mar 2013

Nanostructured Carbon Electrodes, Gordon G. Wallace, Jun Chen, Dan Li, Simon E. Moulton, Joselito M. Razal

Gordon Wallace

In its conducting form, carbon has proven to be a versatile, robust and high performing electrode material in areas such as energy conversion, energy storage and even medical bionics. In our laboratories we have been interested in the fabrication and utilization of nanostructured electrodes based on more recently discovered forms of carbon. These include carbon nanotubes and graphene.


Electrocatalytic Reduction Of Carbon Dioxide By Cobalt-Phthalocyanine-Incorporated Polypyrrole, Jun Chen, Gordon G. Wallace, Jiaxing Lu, Aijian Zhang, Weimin Zhang Mar 2013

Electrocatalytic Reduction Of Carbon Dioxide By Cobalt-Phthalocyanine-Incorporated Polypyrrole, Jun Chen, Gordon G. Wallace, Jiaxing Lu, Aijian Zhang, Weimin Zhang

Gordon Wallace

In the quest for catalysts for the electrocatalytic reduction of , a cobalt phthalocyanine/polypyrrole (CoPc/PPy) composite electrode has been developed. The electrode is prepared by drop casting CoPc onto the PPy film from the CoPc/tetrahydrofuran solution (1 mg/mL). The onset potential for reduction occurred at potentials 160 mV more positive than observed with a simple PPy electrode. Furthermore, in the potentiostatic electrolysis, the catalytic current for reduction at CoPc/PPy was very stable, with a higher current density and current efficiency when compared to the PPy electrode.


Controlled Deposition Of Polymer Carbon Nanotube Composites Through Inkjet Printing, William Small, Fatemeh Masdarolomoor, Gordon G. Wallace, Marc In Het Panhuis Mar 2013

Controlled Deposition Of Polymer Carbon Nanotube Composites Through Inkjet Printing, William Small, Fatemeh Masdarolomoor, Gordon G. Wallace, Marc In Het Panhuis

Gordon Wallace

The controlled deposition of polyaniline carbon nanotube composites by inkjet printing is reported. It is demonstrated that the sheet resistance and transmittance can be expressed in amount of composite and MWNT material deposited. The most efficient way for improving the sheet resistance while keeping the cost in optical transparency to a minimum is by increasing the total amount of material deposited, rather than increasing MWNT loading fraction.


Carbon-Nanotube Biofiber Microelectrodes, Carol M. Lynam, Gordon G. Wallace, Willo Grosse Mar 2013

Carbon-Nanotube Biofiber Microelectrodes, Carol M. Lynam, Gordon G. Wallace, Willo Grosse

Gordon Wallace

All-biocompatible carbon-nanotube fibers were formed using wet spinning. In this process the spinning solutions used are carbon nanotubes dispersed using biomolecules such as hyaluronic acid and chitosan. We compare the effect of a coagulation bath containing either a polymer binder, e.g., polyethyleneimine, or simply a precipitating solvent system, e.g., acetone. The electrical, mechanical, and morphological properties of the resulting fibers were studied. Biocompatible electrode structures were generated suitable for a variety of biomedical applications, e.g.,in biosensors or in systems where the application of an electrical field is advantageous e.g., stimulation of electrically excitable cells such as nerve and muscle cells.


Photocatalytic Oxidation Of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite, Jun Chen, Carol M. Lynam, Chonlada Dechakiatkrai, Gordon G. Wallace, Sukon Phanichphant Mar 2013

Photocatalytic Oxidation Of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite, Jun Chen, Carol M. Lynam, Chonlada Dechakiatkrai, Gordon G. Wallace, Sukon Phanichphant

Gordon Wallace

Titanium dioxide/single-walled carbon nanotube TiO2/SWNT composites were prepared for photocatalytic applications. Thecomposites were characterized using UV-visible and Raman spectroscopy, zeta-potential measurements, cyclic voltammetrycoupled with a photoreactor, scanning electron microscopy, and transmission electron microscopy coupled with energy dispersiveX-ray spectroscopy. The photocatalytic activity of TiO2 and the TiO2/SWNT composite was investigated using the photo-oxidationof methanol in sulfuric acid as supporting electrolyte. The results indicate that the TiO2/SWNT composite enhances the photocatalyticactivity compared to TiO2 alone. Electrochemical studies of the TiO2/SWNT composite were also carried out in varioussupporting electrolytes and the presence of SWNTs was shown to increase the current achieved in voltammetric …


Direct Ascorbic Acid Detection With Ferritin Immobilized On Single-Walled Carbon Nanotubes, Chonlada Dechakiatkrai, Jun Chen, Carol M. Lynam, Kwang Min Shin, Seon Jeong Kim, Sukon Phanichphant, Gordon G. Wallace Mar 2013

Direct Ascorbic Acid Detection With Ferritin Immobilized On Single-Walled Carbon Nanotubes, Chonlada Dechakiatkrai, Jun Chen, Carol M. Lynam, Kwang Min Shin, Seon Jeong Kim, Sukon Phanichphant, Gordon G. Wallace

Gordon Wallace

Ferritin protein was noncovalently immobilized onto single-walled carbon nanotubes (SWNTs). This SWNT/ferritin composite was characterized using cyclic voltammetry, UV-visible spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy. The use of the SWNT/ferritin film as an amperometric biosensor was demonstrated by sensing ascorbic acid in phosphate-buffered saline solution with a sensitivity of 767 uAmg. It demonstrated that ferritin protein bound to SWNTs enhances the oxidation reaction of ascorbic acid over 11-fold.


Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen Jan 2013

Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen

Dissertations, Master's Theses and Master's Reports - Open

Abstract

The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with …


Interactive Controls Of Water Table Position And Plant Functional Types On Peat Porewater Character In Northern Bog Ecosystems: Implications For Carbon Cycling Dynamics, Aleta L. Daniels Jan 2013

Interactive Controls Of Water Table Position And Plant Functional Types On Peat Porewater Character In Northern Bog Ecosystems: Implications For Carbon Cycling Dynamics, Aleta L. Daniels

Dissertations, Master's Theses and Master's Reports - Open

Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated …


A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai Jan 2013

A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai

Articles

Visible-light-induced antibacterial activity of carbon-doped anatase-brookite titania nano-heterojunction photocatalysts are reported for the first time. These heterostructures were prepared using a novel low temperature (100 °C) non-hydrothermal low power microwave (300 W) assisted method. Formation of interband C 2p states was found to be responsible for the band gap narrowing of the carbon doped heterojunctions. The most active photocatalyst obtained after 60 minutes of microwave irradiation exhibits a 2-fold higher visible-light induced photocatalytic activity in contrast to the standard commercial photocatalyst Evonik-Degussa P-25. Staphylococcus aureus inactivation rate constant for carbon-doped nano-heterojunctions and the standard photocatalyst was 0.0023 and -0.0081 min …


Microwave Characterization Of Carbon Nanotube Yarns For Uwb Medical Wireless Body Area Networks, Syed Muzahir Abbas, Oya Sevimli, Michael C. Heimlich, Karu P. Esselle, B Kimiaghalam, Javad Foroughi, Farzad Safaei Jan 2013

Microwave Characterization Of Carbon Nanotube Yarns For Uwb Medical Wireless Body Area Networks, Syed Muzahir Abbas, Oya Sevimli, Michael C. Heimlich, Karu P. Esselle, B Kimiaghalam, Javad Foroughi, Farzad Safaei

Australian Institute for Innovative Materials - Papers

Carbon nanotube (CNT) yarns are novel CNT-based materials that extend the advantages of CNT from the nanoscale to macroscale applications. In this study, we have modeled CNT yarns as potential data transmission lines. Test structures have been designed to measure electrical properties of CNT yarns, which are attached to these test structures using gold paste. DC testing and microwave S-parameter measurements have been conducted for characterization. The observed frequency independent resistive behavior of the CNT yarn is a very promising indicator that this material, with its added values of mechanical resilience and thermal conductivity, could be invaluable for a range …


Using Stable Isotope Analysis Of Zooplankton To Document Trophic And Biogeochemical Changes In The San Francisco Estuary, Steven C. Westbrook, Julien Moderan Jan 2013

Using Stable Isotope Analysis Of Zooplankton To Document Trophic And Biogeochemical Changes In The San Francisco Estuary, Steven C. Westbrook, Julien Moderan

STAR Program Research Presentations

Zooplankton represent a vital link between phytoplankton and fish, like the endangered Delta Smelt. Human interferences (nitrates from waste water, flow alteration, invasive species introduction…) have altered the structure of the San Francisco Estuary (SFE) ecosystem. We use stable isotope analysis to improve our knowledge of the planktonic food web in the SFE and gain insights into its evolution over the past decades. We use the ratios of certain isotopes (Nitrogen, Carbon, Sulfur, etc.) in different species of zooplankton to tell us what it is feeding on as well as the trophic level it feeds in. My research focused on …


Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed Jan 2013

Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed

Australian Institute for Innovative Materials - Papers

Pure polyamide 6 (PA6) and polyamide 6/carbon nanotube (PA6/CNT) composite samples with 0.5 weight percent loading of pristine or functionalized CNTs were made using a solution mixing technique. Modification of nanotube surface as a result of chemical functionalization was confirmed through the presence of lattice defects as examined under high-resolution transmission electron microscope and absorption bands characteristic of carboxylic, sulfonic and amine chemical groups. Microstructural examination of the cryogenically fractured surfaces revealed qualitative information regarding CNT dispersion within PA6 matrix and interfacial strength. X-ray diffraction studies indicated formation of thermodynamically more stable α-phase crystals. Thermogravimetric analysis revealed that CNT incorporation …


'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz Jan 2013

'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz

Australian Institute for Innovative Materials - Papers

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density …


Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Jan 2013

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Australian Institute for Innovative Materials - Papers

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


Platinum Electrodeposition On Unsupported Single Wall Carbon Nanotubes And Its Application As Methane Sensing Material, Enid Contes-De Jesus, Diana Santiago, Gilberto Casillas, Alvaro Mayoral, Cesar Magen, Miguel Jose-Yacaman, Jing Li, Carlos R. Cabrera Jan 2013

Platinum Electrodeposition On Unsupported Single Wall Carbon Nanotubes And Its Application As Methane Sensing Material, Enid Contes-De Jesus, Diana Santiago, Gilberto Casillas, Alvaro Mayoral, Cesar Magen, Miguel Jose-Yacaman, Jing Li, Carlos R. Cabrera

Australian Institute for Innovative Materials - Papers

This paper reports the decoration of single wall carbon nanotubes (SWCNTs) with platinum (Pt) nanoparticles using an electrochemical technique, rotating disk slurry electrode (RoDSE). Pt/SWCNTs were electrochemically characterized by cyclic voltammetry technique (CV) and physically characterized through the use of transmission electron microscopy (TEM), energy dispersive spectroscopy - X-ray florescence (EDS-XRF) and X-ray diffraction (XRD). After characterization it was found that electrodeposited nanoparticles had an average particle size of 4.1 ± 0.8 nm. Pt/SWCNTs were used as sensing material for methane (CH4) detection and showed improved sensing properties in a range of concentration from 50 ppm to 200 ppm parts …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Jan 2013

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Flexible Supercapacitors - Development Of Bendable Carbon Architectures, Zhiqiang Niu, Lili Liu, Peter C. Sherrell, Jun Chen, Xiaodong Chen Jan 2013

Flexible Supercapacitors - Development Of Bendable Carbon Architectures, Zhiqiang Niu, Lili Liu, Peter C. Sherrell, Jun Chen, Xiaodong Chen

Australian Institute for Innovative Materials - Papers

As energy storage devices, Supercapacitors (SCs), also known as electrochemical capacitors, possess high power densities, excellent reversibility and long cycle life. SCs could be applied to diverse fields including electric vehicles, pulse power applications and portable devices. Flexible SCs have attracted significant attention for powering recently developed portable, flexible and wearable electronics. During the past several years, a variety of bendable carbon-based electrode architechtures and flexible SC devices with different designs have been successfully prepared. In this review, we will describe recent developments in the preparation of such bendable carbon-based electrode architechtures and the subsequent design of flexible SC devices. …


Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Jan 2013

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries …


Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou Jan 2013

Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g-1, but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Jan 2013

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Australian Institute for Innovative Materials - Papers

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.