Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Task Distillation: Transforming Reinforcement Learning Into Supervised Learning, Connor Wilhelm Oct 2023

Task Distillation: Transforming Reinforcement Learning Into Supervised Learning, Connor Wilhelm

Theses and Dissertations

Recent work in dataset distillation focuses on distilling supervised classification datasets into smaller, synthetic supervised datasets in order to reduce per-model costs of training, to provide interpretability, and to anonymize data. Distillation and its benefits can be extended to a wider array of tasks. We propose a generalization of dataset distillation, which we call task distillation. Using techniques similar to those used in dataset distillation, any learning task can be distilled into a compressed synthetic task. Task distillation allows for transmodal distillations, where a task of one modality is distilled into a synthetic task of another modality, allowing a more …


Team Air Combat Using Model-Based Reinforcement Learning, David A. Mottice Mar 2022

Team Air Combat Using Model-Based Reinforcement Learning, David A. Mottice

Theses and Dissertations

We formulate the first generalized air combat maneuvering problem (ACMP), called the MvN ACMP, wherein M friendly AUCAVs engage against N enemy AUCAVs, developing a Markov decision process (MDP) model to control the team of M Blue AUCAVs. The MDP model leverages a 5-degree-of-freedom aircraft state transition model and formulates a directed energy weapon capability. Instead, a model-based reinforcement learning approach is adopted wherein an approximate policy iteration algorithmic strategy is implemented to attain high-quality approximate policies relative to a high performing benchmark policy. The ADP algorithm utilizes a multi-layer neural network for the value function approximation regression mechanism. One-versus-one …


Reinforcement Learning With Auxiliary Memory, Sterling Suggs Jun 2021

Reinforcement Learning With Auxiliary Memory, Sterling Suggs

Theses and Dissertations

Deep reinforcement learning algorithms typically require vast amounts of data to train to a useful level of performance. Each time new data is encountered, the network must inefficiently update all of its parameters. Auxiliary memory units can help deep neural networks train more efficiently by separating computation from storage, and providing a means to rapidly store and retrieve precise information. We present four deep reinforcement learning models augmented with external memory, and benchmark their performance on ten tasks from the Arcade Learning Environment. Our discussion and insights will be helpful for future RL researchers developing their own memory agents.


Learning How To Search: Generating Effective Test Cases Through Adaptive Fitness Function Selection, Hussein Khalid Almulla Apr 2021

Learning How To Search: Generating Effective Test Cases Through Adaptive Fitness Function Selection, Hussein Khalid Almulla

Theses and Dissertations

Search-based test generation is guided by feedback from one or more fitness functions— scoring functions that judge solution optimality. Choosing informative fitness functions is crucial to meeting the goals of a tester. Unfortunately, many goals—such as forcing the class-under-test to throw exceptions, increasing test suite diversity, and attaining Strong Mutation Coverage—do not have effective fitness function formulations. We propose that meeting such goals requires treating fitness function identification as a secondary optimization step. An adaptive algorithm that can vary the selection of fitness functions could adjust its selection throughout the generation process to maximize goal attainment, based on the current …


Reinforcement Learning Environment For Orbital Station-Keeping, Armando Herrera Iii Dec 2020

Reinforcement Learning Environment For Orbital Station-Keeping, Armando Herrera Iii

Theses and Dissertations

In this thesis, a Reinforcement Learning Environment for orbital station-keeping is created and tested against one of the most used Reinforcement Learning algorithm called Proximal Policy Optimization (PPO). This thesis also explores the foundations of Reinforcement Learning, from the taxonomy to a description of PPO, and shows a thorough explanation of the physics required to make the RL environment. Optuna optimizes PPO's hyper-parameters for the created environment via distributed computing. This thesis then shows and analysis the results from training a PPO agent six times.


Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery Jun 2020

Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery

Theses and Dissertations

This thesis takes the Scotland Yard board game and modifies its rules to mimic important aspects of space in order to facilitate the creation of artificial intelligence for space asset pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat threats, an understanding of the tactics, techniques, and procedures must be captured and studied. Games and simulations are effective tools to capture data lacking historical context. Artificial intelligence and machine learning models can use simulations to develop proper defensive and offensive tactics, techniques, and procedures capable of protecting systems against potential threats. Monte Carlo Tree Search is a bandit-based …


Comparison Of Rl Algorithms For Learning To Learn Problems, Adolfo Gonzalez Iii Dec 2019

Comparison Of Rl Algorithms For Learning To Learn Problems, Adolfo Gonzalez Iii

Theses and Dissertations

Machine learning has been applied to many different problems successfully due to the expressiveness of neural networks and simplicity of first order optimization algorithms. The latter being a vital piece needed for training large neural networks efficiently. Many of these algorithms were produced with behavior produced by experiments and intuition. An interesting question that comes to mind is that rather than observing and then designing algorithms with beneficial behaviors, can these algorithms be learned through a reinforcement learning by modeling optimization as a game. This paper explores several reinforcement learning algorithms which are applied to learn policies suited for optimization.


Improving Liquid State Machines Through Iterative Refinement Of The Reservoir, R David Norton Mar 2008

Improving Liquid State Machines Through Iterative Refinement Of The Reservoir, R David Norton

Theses and Dissertations

Liquid State Machines (LSMs) exploit the power of recurrent spiking neural networks (SNNs) without training the SNN. Instead, a reservoir, or liquid, is randomly created which acts as a filter for a readout function. We develop three methods for iteratively refining a randomly generated liquid to create a more effective one. First, we apply Hebbian learning to LSMs by building the liquid with spike-time dependant plasticity (STDP) synapses. Second, we create an eligibility based reinforcement learning algorithm for synaptic development. Third, we apply principles of Hebbian learning and reinforcement learning to create a new algorithm called separation driven synaptic modification …


Limitations And Extensions Of The Wolf-Phc Algorithm, Philip R. Cook Sep 2007

Limitations And Extensions Of The Wolf-Phc Algorithm, Philip R. Cook

Theses and Dissertations

Policy Hill Climbing (PHC) is a reinforcement learning algorithm that extends Q-learning to learn probabilistic policies for multi-agent games. WoLF-PHC extends PHC with the "win or learn fast" principle. A proof that PHC will diverge in self-play when playing Shapley's game is given, and WoLF-PHC is shown empirically to diverge as well. Various WoLF-PHC based modifications were created, evaluated, and compared in an attempt to obtain convergence to the single shot Nash equilibrium when playing Shapley's game in self-play without using more information than WoLF-PHC uses. Partial Commitment WoLF-PHC (PCWoLF-PHC), which performs best on Shapley's game, is tested on other …


Learning Successful Strategies In Repeated General-Sum Games, Jacob W. Crandall Dec 2005

Learning Successful Strategies In Repeated General-Sum Games, Jacob W. Crandall

Theses and Dissertations

Many environments in which an agent can use reinforcement learning techniques to learn profitable strategies are affected by other learning agents. These situations can be modeled as general-sum games. When playing repeated general-sum games with other learning agents, the goal of a self-interested learning agent is to maximize its own payoffs over time. Traditional reinforcement learning algorithms learn myopic strategies in these games. As a result, they learn strategies that produce undesirable results in many games. In this dissertation, we develop and analyze algorithms that learn non-myopic strategies when playing many important infinitely repeated general-sum games. We show that, in …


Improving And Extending Behavioral Animation Through Machine Learning, Jonathan J. Dinerstein Apr 2005

Improving And Extending Behavioral Animation Through Machine Learning, Jonathan J. Dinerstein

Theses and Dissertations

Behavioral animation has become popular for creating virtual characters that are autonomous agents and thus self-animating. This is useful for lessening the workload of human animators, populating virtual environments with interactive agents, etc. Unfortunately, current behavioral animation techniques suffer from three key problems: (1) deliberative behavioral models (i.e., cognitive models) are slow to execute; (2) interactive virtual characters cannot adapt online due to interaction with a human user; (3) programming of behavioral models is a difficult and time-intensive process. This dissertation presents a collection of papers that seek to overcome each of these problems. Specifically, these issues are alleviated …


Solving Large Mdps Quickly With Partitioned Value Iteration, David Wingate Jun 2004

Solving Large Mdps Quickly With Partitioned Value Iteration, David Wingate

Theses and Dissertations

Value iteration is not typically considered a viable algorithm for solving large-scale MDPs because it converges too slowly. However, its performance can be dramatically improved by eliminating redundant or useless backups, and by backing up states in the right order. We present several methods designed to help structure value dependency, and present a systematic study of companion prioritization techniques which focus computation in useful regions of the state space. In order to scale to solve ever larger problems, we evaluate all enhancements and methods in the context of parallelizability. Using the enhancements, we discover that in many instances the limiting …