Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Development And Evaluation Of Seasonal, Continental-Scale Streamflow Forecasts, Elissa Marie Yeates May 2022

Development And Evaluation Of Seasonal, Continental-Scale Streamflow Forecasts, Elissa Marie Yeates

Theses and Dissertations

Methods of forecasting streamflow using atmospheric ensembles and hydrologic routing have greatly improved over the past decades. These forecasts anticipate the timing and magnitude of streamflow peaks, enabling early warning of floods. Recent advances in atmospheric modeling have enabled production of forecasts months ahead, which are less precise but give a useful sense of trends.

The purpose of this study is to produce and evaluate a seasonal streamflow forecast model using a Muskingum routing hydrologic model coupled with runoff from a land surface model, and atmospheric input from a medium-term atmospheric and precipitation model. To evaluate the skill of the …


Groundwater Flow And Transport At The Forest-Marsh Boundary: A Modeling Study, Sophia Chason Sanders Jul 2021

Groundwater Flow And Transport At The Forest-Marsh Boundary: A Modeling Study, Sophia Chason Sanders

Theses and Dissertations

The forest-marsh boundary, where tidally influenced salt marshes meet a forested upland, is hydrologically complex due to its multiple water inputs. Groundwater flow and salinity transport at this boundary are not well understood. In order to make predictions about salinity at this boundary as it responds to climatic factors, a two-dimensional model was built to simulate groundwater flow and solute transport at a salt marsh on Sapelo Island, Georgia. After calibration based on observed data from wells at the study site, the model can be used to identify patterns in groundwater movement and solute transport that may influence the vegetation …


Evaluating Ecohydrological Separation With Geochemical Tracers, Δ2h And Δ18o, From Northern California In An Irrigated And Semi-Arid Setting, Erin Bulson May 2018

Evaluating Ecohydrological Separation With Geochemical Tracers, Δ2h And Δ18o, From Northern California In An Irrigated And Semi-Arid Setting, Erin Bulson

Theses and Dissertations

The two water worlds hypothesis challenges the widely accepted ecohydrology tenet that plant roots access a single, homogeneous reservoir of soil water (McDonnell, 2014). This project aspired to advance the understanding of the two water worlds, or ecohydrological separation (ES) of soil water reservoirs, applied to an irrigated agricultural setting. This study also aimed to correlate plant root morphology with plant water uptake. Using geochemical tracers, δ2H and δ18O, isotopic analysis of soil and plant tissue was used to evaluate irrigated plant water acquisition. Field work was conducted on two irrigated farms, Full Belly Farm and Riverdog Farm, in the …


Nutrient Loading Reduction In A Tile Drained Agricultural Watershed Through Watershed-Scale Cover Cropping: A High Resolution Analysis, Benjamin Gerald Bruening Apr 2017

Nutrient Loading Reduction In A Tile Drained Agricultural Watershed Through Watershed-Scale Cover Cropping: A High Resolution Analysis, Benjamin Gerald Bruening

Theses and Dissertations

Nutrient pollution originating from agricultural regions in the Midwest is a serious issue, leading to pollution of drinking water sources as well as large hypoxic zones in the Gulf of Mexico. The source of much of this contamination has been shown to be runoff from agricultural fields in the Upper Mississippi River Basin. One method that has been shown to reduce this pollution from the Upper Mississippi River Basin is the planting of winter cover crops. Winter cover crops such as rye and tillage radish have been shown to significantly reduce nitrate exported from agricultural fields, even in tile-drained watersheds …


A Confidence-Prioritization Approach To Data Processing In Noisy Data Sets And Resulting Estimation Models For Predicting Streamflow Diel Signals In The Pacific Northwest, Nathaniel Lee Gustafson Aug 2012

A Confidence-Prioritization Approach To Data Processing In Noisy Data Sets And Resulting Estimation Models For Predicting Streamflow Diel Signals In The Pacific Northwest, Nathaniel Lee Gustafson

Theses and Dissertations

Streams in small watersheds are often known to exhibit diel fluctuations, in which streamflow oscillates on a 24-hour cycle. Streamflow diel fluctuations, which we investigate in this study, are an informative indicator of environmental processes. However, in Environmental Data sets, as well as many others, there is a range of noise associated with individual data points. Some points are extracted under relatively clear and defined conditions, while others may include a range of known or unknown confounding factors, which may decrease those points' validity. These points may or may not remain useful for training, depending on how much uncertainty they …


The Rate And Timing Of Direct Mountain Front Recharge In An Arid Environment, Silver Island Mountains, Utah, Gregory T. Carling Dec 2007

The Rate And Timing Of Direct Mountain Front Recharge In An Arid Environment, Silver Island Mountains, Utah, Gregory T. Carling

Theses and Dissertations

Direct mountain front recharge (MFR), water table recharge at the base of the mountain front, was evaluated on the arid (<250 mm/yr precipitation) Silver Island Mountains by comparing mountain precipitation to groundwater response. Direct MFR contributions were assessed on two catchments, one bedrock (i.e., mountain block) dominated and the other alluvial fan (i.e., mountain front) dominated. Catchment precipitation and shallow groundwater levels at each catchment outlet were measured for a 24 month period beginning October 2005. This time period captured one complete hydrologic cycle (December 2005-February 2007) for which annual and seasonal direct MFR rates were calculated. Annual direct MFR was calculated using a modified version of the water table fluctuation (WTF) method as 0.015-0.016% of precipitation on both catchments, with seasonal variations of 0% in summer up to 0.023% in winter, spring and fall. Seasonal direct MFR contributions are similar on the bedrock and the alluvial fan dominated catchments, with a notable exception during fall 2006 when direct MFR was twice as effective on the bedrock dominated system than on the alluvial fan dominated system (0.022% and 0.011% of precipitation, respectively). Darcy's law calculations show similarly low annual direct MFR contributions (0.013-0.032% of precipitation) as those calculated by the WTF method. Calculated direct MFR is 10% or less than typical calculated combined MFR (near surface recharge and deep underflow from the mountain block) for similar terrains and climates, and is only 3.5% of the combined MFR for the Silver Island Mountains as calculated by the Maxey-Eakin model. However, based on total recharge to the adjacent playa, it is apparent that the Maxey-Eakin model overestimates combined MFR, and the small calculated direct MFR is at least 50% of combined MFR. Despite some uncertainty in the numerical results, several patterns are evident in the data. The data show that direct MFR occurs in response to small rainfall events throughout much of the year, and that snowmelt is not necessary to produce direct MFR. The data also show that direct MFR responds more quickly and flushes through the system faster on the alluvial fan catchment than on the bedrock catchment.


Relationship Between Fault Zone Architecture And Groundwater Compartmentalization In The East Tintic Mining District, Utah, Sandra Myrtle Conrad Hamaker Nov 2005

Relationship Between Fault Zone Architecture And Groundwater Compartmentalization In The East Tintic Mining District, Utah, Sandra Myrtle Conrad Hamaker

Theses and Dissertations

The Eureka Lilly fault zone provides an impermeable barrier for groundwater flow in the East Tintic mining district. The fault zone separates two distinct groundwaters that have different temperatures, compositions, and potentiometric surfaces. The damage zone of the fault is an extensive network of interconnected open fractures and fault intersections that provide conduits for groundwater flow in otherwise impermeable units. The fault core breccia has been re-cemented and mineralized, which eliminates porosity in the rock by creating a thick impermeable zone, which has compartmentalized groundwaters across the fault zone. The compartmentalization of groundwater shows that fault zone variability (from strain …