Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Visualizing Rhizosphere Chemistry Of Legumes With Mid-Infrared Synchrotron Radiation, Ted K. Raab, Michael C. Martin May 2001

Visualizing Rhizosphere Chemistry Of Legumes With Mid-Infrared Synchrotron Radiation, Ted K. Raab, Michael C. Martin

Ted K. Raab

A bright synchrotron light source operated by the Lawrence Berkeley National Laboratory served as an external source for infrared (IR) microscopy of plant root microcosms. Mid-IR light from synchrotrons is 2-3 orders of magnitude brighter than conventional sources, providing contrast based on the chemical information in the reflected signal at a spatial resolution near the diffraction-limit of 3-10 microns. In an experiment using plant root microcosms fitted with zinc selenide IR-transmissive windows (50 mm x 20 mm x 1 mm), we describe chemical differences and similarities within the root zone of mung bean (Vigna radiata L.), grown with or without …


An Empirical Model Of Amino Acid Transformations In An Alpine Soil, David A. Lipson, Ted K. Raab, Steven K. Schmidt, Russ K. Monson Dec 2000

An Empirical Model Of Amino Acid Transformations In An Alpine Soil, David A. Lipson, Ted K. Raab, Steven K. Schmidt, Russ K. Monson

Ted K. Raab

Amino acids are potentially important nitrogen (N) sources for plants in many ecosystems. However, a quantitative understanding of organic N availability is lacking for most ecosystems. This study estimates seasonal amino acid fluxes in an alpine tundra soil using three independent data sets. In previous work in an alpine dry meadow ecosystem in the Front Range of the Colorado Rocky Mountains, we measured signifcant rates of amino acid production from soil peptides during the plant growing season. This suggested that proteolysis of native soil peptides could serve as a measure of amino acid availability to plants. Here we use a …