Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Hierarchical Control Of Multi-Agent Reinforcement Learning Team In Real-Time Strategy (Rts) Games, Weigui Jair Zhou, Budhitama Subagdja, Ah-Hwee Tan, Darren Wee Sze Ong Dec 2021

Hierarchical Control Of Multi-Agent Reinforcement Learning Team In Real-Time Strategy (Rts) Games, Weigui Jair Zhou, Budhitama Subagdja, Ah-Hwee Tan, Darren Wee Sze Ong

Research Collection School Of Computing and Information Systems

Coordinated control of multi-agent teams is an important task in many real-time strategy (RTS) games. In most prior work, micromanagement is the commonly used strategy whereby individual agents operate independently and make their own combat decisions. On the other extreme, some employ a macromanagement strategy whereby all agents are controlled by a single decision model. In this paper, we propose a hierarchical command and control architecture, consisting of a single high-level and multiple low-level reinforcement learning agents operating in a dynamic environment. This hierarchical model enables the low-level unit agents to make individual decisions while taking commands from the high-level …


Learning To Assign: Towards Fair Task Assignment In Large-Scale Ride Hailing, Dingyuan Shi, Yongxin Tong, Zimu Zhou, Bingchen Song, Weifeng Lv, Qiang Yang Aug 2021

Learning To Assign: Towards Fair Task Assignment In Large-Scale Ride Hailing, Dingyuan Shi, Yongxin Tong, Zimu Zhou, Bingchen Song, Weifeng Lv, Qiang Yang

Research Collection School Of Computing and Information Systems

Ride hailing is a widespread shared mobility application where the central issue is to assign taxi requests to drivers with various objectives. Despite extensive research on task assignment in ride hailing, the fairness of earnings among drivers is largely neglected. Pioneer studies on fair task assignment in ride hailing are ineffective and inefficient due to their myopic optimization perspective and timeconsuming assignment techniques. In this work, we propose LAF, an effective and efficient task assignment scheme that optimizes both utility and fairness. We adopt reinforcement learning to make assignments in a holistic manner and propose a set of acceleration techniques …


Step-Wise Deep Learning Models For Solving Routing Problems, Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang Jul 2021

Step-Wise Deep Learning Models For Solving Routing Problems, Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

Routing problems are very important in intelligent transportation systems. Recently, a number of deep learning-based methods are proposed to automatically learn construction heuristics for solving routing problems. However, these methods do not completely follow Bellman's Principle of Optimality since the visited nodes during construction are still included in the following subtasks, resulting in suboptimal policies. In this article, we propose a novel step-wise scheme which explicitly removes the visited nodes in each node selection step. We apply this scheme to two representative deep models for routing problems, pointer network and transformer attention model (TAM), and significantly improve the performance of …


Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau May 2021

Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem ofmultiagent credit assignment in a large scale multiagent system. Difference rewards (DRs) are an effective tool to tackle this problem, but their exact computation is known to be challenging even for small number of agents. We propose a scalable method to compute difference rewards based on aggregate information in a multiagent system with large number of agents by exploiting the symmetry present in several practical applications. Empirical evaluation on two multiagent domains - air-traffic control and cooperative navigation, shows better solution quality than previous approaches.


Learning Index Policies For Restless Bandits With Application To Maternal Healthcare, Arpita Biswas, Gaurav Aggarwal, Pradeep Varakantham, Milind Tambe May 2021

Learning Index Policies For Restless Bandits With Application To Maternal Healthcare, Arpita Biswas, Gaurav Aggarwal, Pradeep Varakantham, Milind Tambe

Research Collection School Of Computing and Information Systems

In many community health settings, it is crucial to have a systematic monitoring and intervention process to ensure that the patients adhere to healthcare programs, such as periodic health checks or taking medications. When these interventions are expensive, they can be provided to only a fixed small fraction of the patients at any period of time. Hence, it is important to carefully choose the beneficiaries who should be provided with interventions and when. We model this scenario as a restless multi-armed bandit (RMAB) problem, where each beneficiary is assumed to transition from one state to another depending on the intervention …


Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar May 2021

Approximate Difference Rewards For Scalable Multigent Reinforcement Learning, Arambam James Singh, Akshat Kumar

Research Collection School Of Computing and Information Systems

We address the problem of multiagent credit assignment in a large scale multiagent system. Difference rewards (DRs) are an effective tool to tackle this problem, but their exact computation is known to be challenging even for small number of agents. We propose a scalable method to compute difference rewards based on aggregate information in a multiagent system with large number of agents by exploiting the symmetry present in several practical applications. Empirical evaluation on two multiagent domains—air-traffic control and cooperative navigation, shows better solution quality than previous approaches.