Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Voucher Abuse Detection With Prompt-Based Fine-Tuning On Graph Neural Networks, Zhihao Wen, Yuan Fang, Yihan Liu, Yang Guo, Shuji Hao Oct 2023

Voucher Abuse Detection With Prompt-Based Fine-Tuning On Graph Neural Networks, Zhihao Wen, Yuan Fang, Yihan Liu, Yang Guo, Shuji Hao

Research Collection School Of Computing and Information Systems

Voucher abuse detection is an important anomaly detection problem in E-commerce. While many GNN-based solutions have emerged, the supervised paradigm depends on a large quantity of labeled data. A popular alternative is to adopt self-supervised pre-training using label-free data, and further fine-tune on a downstream task with limited labels. Nevertheless, the "pre-train, fine-tune" paradigm is often plagued by the objective gap between pre-training and downstream tasks. Hence, we propose VPGNN, a prompt-based fine-tuning framework on GNNs for voucher abuse detection. We design a novel graph prompting function to reformulate the downstream task into a similar template as the pretext task …


Uncertainty-Adjusted Inductive Matrix Completion With Graph Neural Networks, Petr Kasalicky, Antoine Ledent, Rodrigo Alves Sep 2023

Uncertainty-Adjusted Inductive Matrix Completion With Graph Neural Networks, Petr Kasalicky, Antoine Ledent, Rodrigo Alves

Research Collection School Of Computing and Information Systems

We propose a robust recommender systems model which performs matrix completion and a ratings-wise uncertainty estimation jointly. Whilst the prediction module is purely based on an implicit low-rank assumption imposed via nuclear norm regularization, our loss function is augmented by an uncertainty estimation module which learns an anomaly score for each individual rating via a Graph Neural Network: data points deemed more anomalous by the GNN are downregulated in the loss function used to train the low-rank module. The whole model is trained in an end-to-end fashion, allowing the anomaly detection module to tap on the supervised information available in …


Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision, Hongzuo Xu, Yijie Wang, Guansong Pang, Songlei Jian, Ning Liu, Yongjun Wang Sep 2023

Rosas: Deep Semi-Supervised Anomaly Detection With Contamination-Resilient Continuous Supervision, Hongzuo Xu, Yijie Wang, Guansong Pang, Songlei Jian, Ning Liu, Yongjun Wang

Research Collection School Of Computing and Information Systems

Semi-supervised anomaly detection methods leverage a few anomaly examples to yield drastically improved performance compared to unsupervised models. However, they still suffer from two limitations: 1) unlabeled anomalies (i.e., anomaly contamination) may mislead the learning process when all the unlabeled data are employed as inliers for model training; 2) only discrete supervision information (such as binary or ordinal data labels) is exploited, which leads to suboptimal learning of anomaly scores that essentially take on a continuous distribution. Therefore, this paper proposes a novel semi-supervised anomaly detection method, which devises contamination-resilient continuous supervisory signals. Specifically, we propose a mass interpolation method …


Graph-Level Anomaly Detection Via Hierarchical Memory Networks, Chaoxi Niu, Guansong Pang, Ling Chen Sep 2023

Graph-Level Anomaly Detection Via Hierarchical Memory Networks, Chaoxi Niu, Guansong Pang, Ling Chen

Research Collection School Of Computing and Information Systems

Graph-level anomaly detection aims to identify abnormal graphs that exhibit deviant structures and node attributes compared to the majority in a graph set. One primary challenge is to learn normal patterns manifested in both fine-grained and holistic views of graphs for identifying graphs that are abnormal in part or in whole. To tackle this challenge, we propose a novel approach called Hierarchical Memory Networks (HimNet), which learns hierarchical memory modules---node and graph memory modules---via a graph autoencoder network architecture. The node-level memory module is trained to model fine-grained, internal graph interactions among nodes for detecting locally abnormal graphs, while the …


Deep Weakly-Supervised Anomaly Detection, Guansong Pang, Chunhua Shen, Huidong Jin, Anton Van Den Hengel Aug 2023

Deep Weakly-Supervised Anomaly Detection, Guansong Pang, Chunhua Shen, Huidong Jin, Anton Van Den Hengel

Research Collection School Of Computing and Information Systems

Recent semi-supervised anomaly detection methods that are trained using small labeled anomaly examples and large unlabeled data (mostly normal data) have shown largely improved performance over unsupervised methods. However, these methods often focus on fitting abnormalities illustrated by the given anomaly examples only (i.e., seen anomalies), and consequently they fail to generalize to those that are not, i.e., new types/classes of anomaly unseen during training. To detect both seen and unseen anomalies, we introduce a novel deep weakly-supervised approach, namely Pairwise Relation prediction Network (PReNet), that learns pairwise relation features and anomaly scores by predicting the relation of any two …