Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Reinforcement Learning For Zone Based Multiagent Pathfinding Under Uncertainty, Jiajing Ling, Tarun Gupta, Akshat Kumar Oct 2020

Reinforcement Learning For Zone Based Multiagent Pathfinding Under Uncertainty, Jiajing Ling, Tarun Gupta, Akshat Kumar

Research Collection School Of Computing and Information Systems

We address the problem of multiple agents finding their paths from respective sources to destination nodes in a graph (also called MAPF). Most existing approaches assume that all agents move at fixed speed, and that a single node accommodates only a single agent. Motivated by the emerging applications of autonomous vehicles such as drone traffic management, we present zone-based path finding (or ZBPF) where agents move among zones, and agents' movements require uncertain travel time. Furthermore, each zone can accommodate multiple agents (as per its capacity). We also develop a simulator for ZBPF which provides a clean interface from the …


Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh Oct 2020

Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh

Research Collection School Of Computing and Information Systems

Traffic congestion reduces productivity of individuals by increasing time spent in traffic and also increases pollution. To reduce traffic congestion by better handling dynamic traffic patterns, recent work has focused on online traffic signal control. Typically, the objective in traffic signal control is to minimize expected delay over all vehicles given the uncertainty associated with the vehicle turn movements at intersections. In order to ensure responsiveness in decision making, a typical approach is to compute a schedule that minimizes the delay for the expected scenario of vehicle movements instead of minimizing expected delay over the feasible vehicle movement scenarios. Such …


Adaptive Large Neighborhood Search For Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu Jul 2020

Adaptive Large Neighborhood Search For Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

Cross-docking is considered as a method to manage and control the inventory flow, which is essential in the context of supply chain management. This paper studies the integration of the vehicle routing problem with cross-docking, namely VRPCD which has been extensively studied due to its ability to reducethe overall costs occurring in a supply chain network. Given a fleet of homogeneous vehicles for delivering a single type of product from suppliers to customers through a cross-dock facility, the objective of VRPCD is to determine the number of vehicles used and the corresponding vehicle routes, such that the vehicleoperational and transportation …


A Matheuristic Algorithm For Solving The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu May 2020

A Matheuristic Algorithm For Solving The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

This paper studies the integration of the vehicle routing problem with cross-docking, namely VRPCD. The aim is to find a set of routes to deliver single products from a set of suppliers to a set of customers through a cross-dock facility, such that the operational and transportation costs are minimized, without violating the vehicle capacity and time horizon constraints. A two-phase matheuristic approach that uses the routes of the local optima of an adaptive large neighborhood search (ALNS) as columns in a set-partitioning formulation of the VRPCD is designed. This matheuristic outperforms the state-of-the-art algorithms in solving a subset of …