Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Macalester Journal of Physics and Astronomy

Journal

CVD graphene

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Effects Of Hydrazine Monohydrate Surface Doping On Graphene, Christian M. Stewart May 2016

The Effects Of Hydrazine Monohydrate Surface Doping On Graphene, Christian M. Stewart

Macalester Journal of Physics and Astronomy

In this project we investigate how the carrier concentration and scattering time of chemical vapor deposition (CVD) graphene samples are affected by the exposure of these samples to hydrazine monohydrate. We used both immersion techniques and vapor deposition techniques to surface dope our graphene samples. We use both Fourier transform infrared spectroscopy and Hall effect measurements to investigate these effects.We find that after surface doping CVD graphene samples, the electron concentration greatly increases while the scattering time is nearly unaffected. We also find that this doping process with hydrazine monohydrate is reversible.


Modelling Transient Terahertz Magneto-Spectroscopy Measurements Of P-Type Cvd Graphene Leading To A Negative Photoconductivity., Rhyan Foo Kune May 2015

Modelling Transient Terahertz Magneto-Spectroscopy Measurements Of P-Type Cvd Graphene Leading To A Negative Photoconductivity., Rhyan Foo Kune

Macalester Journal of Physics and Astronomy

Ultrafast Terahertz (THz) Magneto-Spectroscopy (UTMS) measurements were performed on p-type CVD graphene sample to investigate the intrinsic carrier dynamics of the material. We investigated static and time-resolved THz transmission measurements, in which the sample was photo-excited by a near infrared (NIR) pump pulse, in order to study its behavior in a magnetic field. In these measurements the free carriers were probed to independently measure the carrier density and scattering rate in this film. We observed, in our graphene sample, an increase in transmission related to a negative photoconductivity (decrease in conductivity after photoexcitation) consistent with previous research. This decrease is …