Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Revealing The Core Dynamics Of Vesta: Insights From Experimental Investigations Of Electrical Resistivity And Thermal Conductivity, Oluwasanmi A. Orole Mr Nov 2023

Revealing The Core Dynamics Of Vesta: Insights From Experimental Investigations Of Electrical Resistivity And Thermal Conductivity, Oluwasanmi A. Orole Mr

Electronic Thesis and Dissertation Repository

Insights from high pressure and temperature experiments involving in-situ measurements of the electrical resistivity of Fe-5wt%Ni at temperatures of up to 2000 K, under pressures of 2-5 GPa in a 1000-ton cubic-anvil press have been used to reveal Vesta’s core dynamics. The Wiedemann–Franz law was used to calculate the thermal conductivity from the measured electrical resistivity data. Comparing the findings of this study with prior investigations on both pure Fe and Fe-10wt%Ni indicates that an increase in Ni ranging from 0-10wt% has negligible effect on the electrical resistivity of Fe alloys. By comparing the range of estimated heat flux through …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


The Role Of Nonideal Magnetohydrodynamic Effects, Gravitational Instability, And Episodic Accretion In Star-Formation, Indrani Das Jul 2022

The Role Of Nonideal Magnetohydrodynamic Effects, Gravitational Instability, And Episodic Accretion In Star-Formation, Indrani Das

Electronic Thesis and Dissertation Repository

My dissertation focuses on the effect of magnetic fields on disk and core evolution during star-formation. We investigate the fragmentation scales of gravitational instability of a rotationally-supported self-gravitating protostellar disk using linear perturbation analysis in the presence of two nonideal magnetohydrodynamic (MHD) effects: Ohmic dissipation and ambipolar diffusion. Our results show that molecular clouds exhibit a preferred lengthscale for collapse that depends on mass-to-flux ratio, magnetic diffusivities, and the Toomre-Q parameter. In addition, the influence of the magnetic field on the preferred mass for collapse leads to a modified threshold for the fragmentation mass, as opposed to a Jeans mass, …


Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino Jun 2021

Mathematical Modelling & Simulation Of Large And Small Scale Structures In Star Formation, Gianfranco Bino

Electronic Thesis and Dissertation Repository

This thesis aims to study the magnetic and evolutionary properties of stellar objects from the prestellar phase up to and including the late protostellar phase. Many of the properties governing star formation are linked to the core’s physical properties and the magnetic field highly dictates much of the core’s stability.

The thesis begins with the implementation of a fully analytic magnetic field model used to study the magnetic properties governing the prestellar core FeSt 1-457. The model is a direct result of Maxwell’s equations and yields a central-to-surface magnetic field ratio in the equatorial plane in cylindrical coordinates. The model …


From Large-Scale Molecular Clouds To Filaments And Cores : Unveiling The Role Of The Magnetic Fields In Star Formation, Sayantan Auddy Jul 2018

From Large-Scale Molecular Clouds To Filaments And Cores : Unveiling The Role Of The Magnetic Fields In Star Formation, Sayantan Auddy

Electronic Thesis and Dissertation Repository

I present a comprehensive study of the role of strong magnetic fields in characterizing the structure of molecular clouds. We run three-dimensional turbulent non-ideal magnetohydrodynamic simulations (with ambipolar diffusion) to see the effect of magnetic fields on the evolution of the column density probability distribution function (PDF). Our results indicate a systematic dependence of the column density PDF of molecular clouds on magnetic field strength and turbulence, with observationally distinguishable outcomes between supercritical (gravity dominated) and subcritical (magnetic field dominated) initial conditions. We find that most cases develop a direct power-law PDF, and only the subcritical clouds with turbulence are …


Methods And Results Toward Measuring Magnetic Fields In Star-Forming Regions, Scott C. Jones Apr 2015

Magnetic Diffusion In Star Formation: From Clouds To Cores To Stars To Disks, Wolfgang B. Dapp Jun 2011

Magnetic Diffusion In Star Formation: From Clouds To Cores To Stars To Disks, Wolfgang B. Dapp

Electronic Thesis and Dissertation Repository

We investigate magnetic diffusion on scales from molecular clouds over prestellar and
protostellar cores down to young stellar objects (YSOs) and their surrounding protoplanetary disk.
In Chapter 2, we present thin-sheet simulations that exhibit long-lived magnetic-tension-driven oscillations, founded in the interaction of the cloud's magnetic field with that anchored in an external medium. In contrast with "local" simulations in a periodic box, where turbulence decays away in approximately a sound crossing time, and needs to be continually replenished by driving, our simulation has "global" aspects, and retains some kinetic energy indefinitely. We provide an analytical explanation for these modes, that …