Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni Dec 2023

High-Performance Computing In Covariant Loop Quantum Gravity, Pietropaolo Frisoni

Electronic Thesis and Dissertation Repository

This Ph.D. thesis presents a compilation of the scientific papers I published over the last three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively introduce spinfoam calculations with a practical pedagogical paper. We highlight LQG's unique features and mathematical formalism and emphasize the computational complexities associated with its calculations. The subsequent articles delve into specific aspects of employing high-performance computing (HPC) in LQG research. We discuss the results obtained by applying numerical methods to studying spinfoams' infrared divergences, or ``bubbles''. This research direction is crucial to define the continuum limit of LQG properly. We investigate the …


Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani Aug 2023

Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani

Electronic Thesis and Dissertation Repository

In scientific research, understanding and modeling physical systems often involves working with complex equations called Partial Differential Equations (PDEs). These equations are essential for describing the relationships between variables and their derivatives, allowing us to analyze a wide range of phenomena, from fluid dynamics to quantum mechanics. Traditionally, the discovery of PDEs relied on mathematical derivations and expert knowledge. However, the advent of data-driven approaches and machine learning (ML) techniques has transformed this process. By harnessing ML techniques and data analysis methods, data-driven approaches have revolutionized the task of uncovering complex equations that describe physical systems. The primary goal in …


Dynamically Finding Optimal Kernel Launch Parameters For Cuda Programs, Taabish Jeshani Apr 2023

Dynamically Finding Optimal Kernel Launch Parameters For Cuda Programs, Taabish Jeshani

Electronic Thesis and Dissertation Repository

In this thesis, we present KLARAPTOR (Kernel LAunch parameters RAtional Program estimaTOR), a freely available tool to dynamically determine the values of kernel launch parameters of a CUDA kernel. We describe a technique for building a helper program, at the compile-time of a CUDA program, that is used at run-time to determine near-optimal kernel launch parameters for the kernels of that CUDA program. This technique leverages the MWP-CWP performance prediction model, runtime data parameters, and runtime hardware parameters to dynamically determine the launch parameters for each kernel invocation. This technique is implemented within the KLARAPTOR tool, utilizing the LLVM Pass …


The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei Jan 2023

Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei

Electronic Thesis and Dissertation Repository

Galaxies are complex systems of stars, gas, dust, and dark matter which evolve over billions of years, and one of the main goals of astrophysics is to understand how these complex systems form and change. Measuring the star formation history of nearby galaxies, in which thousands of stars can be resolved individually, has provided us with a clear picture of their evolutionary history and the evolution of galaxies in general.

In this work, we have developed the first public Python package, SFHPy, to measure star formation histories of nearby galaxies using their colour-magnitude diagrams. In this algorithm, an observed colour-magnitude …