Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Electronic Thesis and Dissertation Repository

2022

Disk evolution

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Role Of Nonideal Magnetohydrodynamic Effects, Gravitational Instability, And Episodic Accretion In Star-Formation, Indrani Das Jul 2022

The Role Of Nonideal Magnetohydrodynamic Effects, Gravitational Instability, And Episodic Accretion In Star-Formation, Indrani Das

Electronic Thesis and Dissertation Repository

My dissertation focuses on the effect of magnetic fields on disk and core evolution during star-formation. We investigate the fragmentation scales of gravitational instability of a rotationally-supported self-gravitating protostellar disk using linear perturbation analysis in the presence of two nonideal magnetohydrodynamic (MHD) effects: Ohmic dissipation and ambipolar diffusion. Our results show that molecular clouds exhibit a preferred lengthscale for collapse that depends on mass-to-flux ratio, magnetic diffusivities, and the Toomre-Q parameter. In addition, the influence of the magnetic field on the preferred mass for collapse leads to a modified threshold for the fragmentation mass, as opposed to a Jeans mass, …


The Dynamical Evolution Of Classical Be Stars, Keegan Marr Feb 2022

The Dynamical Evolution Of Classical Be Stars, Keegan Marr

Electronic Thesis and Dissertation Repository

This thesis focuses on the evolution of the disks of two classical B-emission (Be) stars, 66 Ophiuchi and Pleione, and on the thermal structure for disks tilted out of the star's equatorial plane.

We used a hydrodynamic code to model the disk of the Be star 66 Ophiuchi. Observations from 1957 to 2020 were compiled to follow the growth and subsequent dissipation of the disk. Our models are constrained by new and archival photometry, spectroscopy and polarization observations. Using Markov chain Monte Carlo methods, we confirm that 66 Oph is a B2Ve star. We constrain the density profile of the …