Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Finding Nonlinear Relationships In Functional Magnetic Resonance Imaging Data With Genetic Programming, James Hughes Jul 2018

Finding Nonlinear Relationships In Functional Magnetic Resonance Imaging Data With Genetic Programming, James Hughes

Electronic Thesis and Dissertation Repository

The human brain is a complex, nonlinear dynamic chaotic system that is poorly understood. When faced with these difficult to understand systems, it is common to observe the system and develop models such that the underlying system might be deciphered. When observing neurological activity within the brain with functional magnetic resonance imaging (fMRI), it is common to develop linear models of functional connectivity; however, these models are incapable of describing the nonlinearities we know to exist within the system.

A genetic programming (GP) system was developed to perform symbolic regression on recorded fMRI data. Symbolic regression makes fewer assumptions than …


Baseline Assisted Classification Of Heart Rate Variability, Elham Harirpoush Jun 2018

Baseline Assisted Classification Of Heart Rate Variability, Elham Harirpoush

Electronic Thesis and Dissertation Repository

Recently, among various analysis methods of physiological signals, automatic analysis of Electrocardiogram (ECG) signals, especially heart rate variability (HRV) has received significant attention in the field of machine learning. Heart rate variability is an important indicator of health prediction and it is applicable to various fields of scientific research. Heart rate variability is based on measuring the differences in time between consecutive heartbeats (also known as RR interval), and the most common measuring techniques are divided into the time domain and frequency domain. In this research study, a classifier based on analysis of HRV signal is developed to classify different …


Pelee: A Real-Time Object Detection System On Mobile Devices, Jun Wang Apr 2018

Pelee: A Real-Time Object Detection System On Mobile Devices, Jun Wang

Electronic Thesis and Dissertation Repository

There has been a rising interest in running high-quality Convolutional Neural Network (CNN) models under strict constraints on memory and computational budget. A number of efficient architectures have been proposed in recent years, for example, MobileNet, ShuffleNet, and NASNet-A. However, all these architectures are heavily dependent on depthwise separable convolution which lacks efficient implementation in most deep learning frameworks. Meanwhile, there are few studies that combine efficient models with fast object detection algorithms. This research tries to explore the design of an efficient CNN architecture for both image classification tasks and object detection tasks. We propose an efficient architecture named …


Feature Based Calibration Of A Network Of Kinect Sensors, Xiaoyang Li Jan 2018

Feature Based Calibration Of A Network Of Kinect Sensors, Xiaoyang Li

Electronic Thesis and Dissertation Repository

The availability of affordable depth sensors in conjunction with common RGB cameras, such as the Microsoft Kinect, can provide robots with a complete and instantaneous representation of the current surrounding environment. However, in the problem of calibrating multiple camera systems, traditional methods bear some drawbacks, such as requiring human intervention. In this thesis, we propose an automatic and reliable calibration framework that can easily estimate the extrinsic parameters of a Kinect sensor network. Our framework includes feature extraction, Random Sample Consensus and camera pose estimation from high accuracy correspondences. We also implement a robustness analysis of position estimation algorithms. The …