Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Civil and Environmental Engineering Faculty Publications and Presentations

Series

Discipline
Keyword
Publication Year

Articles 1 - 30 of 92

Full-Text Articles in Physical Sciences and Mathematics

Assessment Of Pathogens In Flood Waters In Coastal Rural Regions: Case Study After Hurricane Michael And Florence, Moiz Usmani, Sital Uprety, Nathan Bonham, Yusuf Jamal, Yuqing Mao, Daisuke Sano, Joanna Shisler, Avinash Unnikrishnan, Thanh H. Nguyen, Antarpreet Jutla Aug 2023

Assessment Of Pathogens In Flood Waters In Coastal Rural Regions: Case Study After Hurricane Michael And Florence, Moiz Usmani, Sital Uprety, Nathan Bonham, Yusuf Jamal, Yuqing Mao, Daisuke Sano, Joanna Shisler, Avinash Unnikrishnan, Thanh H. Nguyen, Antarpreet Jutla

Civil and Environmental Engineering Faculty Publications and Presentations

The severity of hurricanes, and thus the associated impacts, is changing over time. One of the understudied threats from damage caused by hurricanes is the potential for cross-contamination of water bodies with pathogens in coastal agricultural regions. Using microbiological data collected after hurricanes Florence and Michael, this study shows a dichotomy in the presence of pathogens in coastal North Carolina and Florida. Salmonella typhimurium was abundant in water samples collected in the regions dominated by swine farms. A drastic decrease in Enterococcus spp. in Carolinas is indicative of pathogen removal with flooding waters. Except for the abundance presence of Salmonella …


Warming Of The Willamette River, 1850–Present: The Effects Of Climate Change And Direct Human Interventions, Stefan Talke, David Jay, Heida Diefenderfer Sep 2022

Warming Of The Willamette River, 1850–Present: The Effects Of Climate Change And Direct Human Interventions, Stefan Talke, David Jay, Heida Diefenderfer

Civil and Environmental Engineering Faculty Publications and Presentations

Using archival research methods, we found and combined data from multiple sources to produce a unique, 140 year record of daily water temperature (Tw) in the lower Willamette River, Oregon (1881–1890, 1941–present). Additional daily weather and river flow records from the 1850s onwards are used to develop and validate a statistical regression model of Tw for 1850–2020. The model simulates the time-lagged response of Tw to air temperature and river flow, and is calibrated for three distinct time periods: the late 19th, mid 20th, and early 21st centuries. Results show that Tw has trended upwards at ~1.1 °C …


Environmental Decision Support Systems As A Service: Demonstration On Ce-Qual-W2 Model, Yoav Bornstein, Ben Dayan, Amir Cahn, Scott A. Wells Apr 2022

Environmental Decision Support Systems As A Service: Demonstration On Ce-Qual-W2 Model, Yoav Bornstein, Ben Dayan, Amir Cahn, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

An environmental decision support system (EDSS) can be used as an important tool for the rehabilitation and preservation of ecosystems. Nonetheless, high assimilation costs (both money and time) are one of the main reasons these tools are not widely adopted in practice. This work presents a low-cost paradigm of “EDSS as a Service.” This paradigm is demonstrated for developing a water quality EDSS as a service that utilizes the well-known CE-QUAL-W2 model as a kernel for deriving optimized decisions. The paradigm is leveraging new open-source technologies in software development (e.g., Docker, Kubernetes, and Helm) with cloud computing to significantly reduce …


Altimetry For The Future: Building On 25 Years Of Progress, Saleh Abdalla, Abdolnabi Kolahchi, Micheal Ablain, Susheel Adusumilli, Suchandra Aich Bhowmick, Eva Alou-Font, Laiba Amarouche, Ole Baltazar Andersen, Edward Zaron, Multiple Additional Authors Mar 2021

Altimetry For The Future: Building On 25 Years Of Progress, Saleh Abdalla, Abdolnabi Kolahchi, Micheal Ablain, Susheel Adusumilli, Suchandra Aich Bhowmick, Eva Alou-Font, Laiba Amarouche, Ole Baltazar Andersen, Edward Zaron, Multiple Additional Authors

Civil and Environmental Engineering Faculty Publications and Presentations

In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the …


Distribution And Antibiotic Resistance Profiles Of Salmonella Enterica In Rural Areas Of North Carolina After Hurricane Florence In 2018, Yuqing Mao, Mohamed Zeineldin, Moiz Usmani, Sital Uprety, Joanna Shisler, Antarpreet Jutla, Avinash Unnikrishnan, Thanh H. Nguyen Feb 2021

Distribution And Antibiotic Resistance Profiles Of Salmonella Enterica In Rural Areas Of North Carolina After Hurricane Florence In 2018, Yuqing Mao, Mohamed Zeineldin, Moiz Usmani, Sital Uprety, Joanna Shisler, Antarpreet Jutla, Avinash Unnikrishnan, Thanh H. Nguyen

Civil and Environmental Engineering Faculty Publications and Presentations

The frequency and magnitude of extreme events are increasing globally (Arnell & Gosling, 2016). Inundation, as a result of massive flooding, has the potential to change environmental conditions abruptly, and as a result, add pressure to the metabolism and proliferation of microorganisms (Furtak et al., 2020). The resulting overland flows and additional burden from domestic sewer and septic tank systems during an extreme flood event can introduce pathogens into ecologically unstable water bodies. For example, Yu et al. (2018) reported elevated levels of Escherichia coli and antibiotic resistance genes (ARGs) in river water samples 6 months after flooding in Houston, …


Ecohydrology Of Epiphytes: Modelling Water Balance, Cam Photosynthesis, And Their Climate Impacts, Gretta Miller, Samantha Hartzell, Amilcare Porporato Jan 2021

Ecohydrology Of Epiphytes: Modelling Water Balance, Cam Photosynthesis, And Their Climate Impacts, Gretta Miller, Samantha Hartzell, Amilcare Porporato

Civil and Environmental Engineering Faculty Publications and Presentations

Epiphytes are aerial plants, often characterized by CAM (crassulacean acid metabolism) photosynthesis, which make up a significant portion of the biomass in some rainforests. Their unique characteristics have not yet been included in ecohydrological models, and their potential impact on local hydrometeorology is largely unexplored. This work introduces a water balance model for epiphytes, which adapts the soil‐plant‐atmosphere continuum model to represent a plant system without soil and couples it to the Photo3 photosynthesis model, which includes CAM photosynthesis. The model, which is parameterized with field data of Guzmania monostachia, accurately captures the observed hydraulic and photosynthetic behaviour of …


Storm Tide Amplification And Habitat Changes Due To Urbanization Of A Lagoonal Estuary, Philip Orton, Eric W. Sanderson, Stefan Talke, Mario Giampieri, Kytt Macmanus Jan 2020

Storm Tide Amplification And Habitat Changes Due To Urbanization Of A Lagoonal Estuary, Philip Orton, Eric W. Sanderson, Stefan Talke, Mario Giampieri, Kytt Macmanus

Civil and Environmental Engineering Faculty Publications and Presentations

In recent centuries, human activities have greatly modified the geomorphology of coastal regions. However, studies of historical and possible future changes in coastal flood extremes typically ignore the influence of geomorphic change. Here, we quantify the influence of 20th-century man-made changes to Jamaica Bay, New York City, on present-day storm tides. We develop and validate a hydrodynamic model for the 1870s based on detailed maps of bathymetry, seabed characteristics, topography, and tide observations for use alongside a present-day model. Predominantly through dredging, landfill, and inlet stabilization, the average water depth of the bay increased from 1.7 to 4.5 m, tidal …


Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle Mar 2019

Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle

Civil and Environmental Engineering Faculty Publications and Presentations

Ecosystem water-use efficiency (WUE) is defined as the ratio of carbon gain (i.e., gross primary productivity; GPP) to water consumption (i.e., evapotranspiration; ET). WUE is markedly influential on carbon and water cycles, both of which are fundamental for ecosystem state, climate and the environment. Drought can affect WUE, subsequently disturbing the composition and functionality of terrestrial ecosystems. In this study, the impacts of drought on WUE and its components (i.e., GPP and ET) are assessed across the Contiguous US (CONUS) at fine spatial and temporal resolutions. Soil moisture simulations from land surface modeling are utilized to detect and characterize agricultural …


Predictability Of Non-Phase-Locked Baroclinic Tides In The Caribbean Sea, Edward D. Zaron Jan 2019

Predictability Of Non-Phase-Locked Baroclinic Tides In The Caribbean Sea, Edward D. Zaron

Civil and Environmental Engineering Faculty Publications and Presentations

Abstract.

The predictability of the sea surface height expression of baroclinic tides is examined with 96h forecasts produced by the AMSEAS operational forecast model during 2013–2014. The phase-locked tide, both barotropic and baroclinic, is identified by harmonic analysis of the 2-year record and found to agree well with observations from tide gauges and satellite altimetry within the Caribbean Sea. The non-phase-locked baroclinic tide, which is created by timevariablemesoscalestratificationandcurrents,maybeidentified from residual sea level anomalies (SLAs) near the tidal frequencies. The predictability of the non-phase-locked tide is assessed by measuring the difference between a forecast – centeredat T+36, T+60,or T+84h–andthemodel’slater verifying analysis …


Mechanics And Historical Evolution Of Sea Level Blowouts In New York Harbor, Praneeth Gurumurthy, Philip Orton, Stefan A. Talke, Nickitas Georgas, James F. Booth Jan 2019

Mechanics And Historical Evolution Of Sea Level Blowouts In New York Harbor, Praneeth Gurumurthy, Philip Orton, Stefan A. Talke, Nickitas Georgas, James F. Booth

Civil and Environmental Engineering Faculty Publications and Presentations

Wind-induced sea level blowouts, measured as negative storm surge or extreme low water (ELW), produce public safety hazards and impose economic costs (e.g., to shipping). In this paper, we use a regional hydrodynamic numerical model to test the effect of historical environmental change and the time scale, direction, and magnitude of wind forcing on negative and positive surge events in the New York Harbor (NYH). Environmental sensitivity experiments show that dredging of shipping channels is an important factor affecting blowouts while changing ice cover and removal of other roughness elements are unimportant in NYH. Continuously measured water level records since …


Bigger Tides, Less Flooding: Effects Of Dredging On Barotropic Dynamics In A Highly Modified Estuary, David K. Ralston, Stefan Talke, W. Rockwell Geyer, Hussein A. M. Al-Zubaidi, Christopher K. Sommerfield Jan 2019

Bigger Tides, Less Flooding: Effects Of Dredging On Barotropic Dynamics In A Highly Modified Estuary, David K. Ralston, Stefan Talke, W. Rockwell Geyer, Hussein A. M. Al-Zubaidi, Christopher K. Sommerfield

Civil and Environmental Engineering Faculty Publications and Presentations

Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the …


Effects Of Water Level Fluctuation On Thermal Stratification In A Typical Tributary Bay Of Three Gorges Reservoir, China, Juxiang Jin, Scott Wells, Defu Liu, Guolu Yang, Senlin Zhu, Jun Ma, Zhengjian Yang Jan 2019

Effects Of Water Level Fluctuation On Thermal Stratification In A Typical Tributary Bay Of Three Gorges Reservoir, China, Juxiang Jin, Scott Wells, Defu Liu, Guolu Yang, Senlin Zhu, Jun Ma, Zhengjian Yang

Civil and Environmental Engineering Faculty Publications and Presentations

Xiangxi River is a typical tributary of Three Gorges Reservoir (TGR) in China. Based on field observations in 2010, thermal stratification was significant in most months of the year. Through field data analysis and numerical simulations, the seasonal and spatial variation of thermal stratification as related to the impact of the operation of TGR were investigated. Thermal stratification was most pronounced from April to September in the Xiangxi River tributary. Air temperature (AT) and water level (WL) were the two dominant variables impacting thermal stratification. AT affected the surface water temperature promoting the formation of thermal stratification, and high WLs …


Aliased Tidal Variability In Mesoscale Sea Level Anomaly Maps, Edward Zaron, Richard D. Ray Dec 2018

Aliased Tidal Variability In Mesoscale Sea Level Anomaly Maps, Edward Zaron, Richard D. Ray

Civil and Environmental Engineering Faculty Publications and Presentations

Sea level anomaly (SLA) maps are routinely produced by objective analysis of data from the constellation of satellite altimeter missions in operation since 1992. Beginning in 2014, changes in the Data Unification and Altimeter Combination System (DUACS) used to create the SLA maps resulted in improved spatial resolution of mesoscale variability, but it also increased the levels of aliased tidal variability compared to the methodology employed prior to 2014. The present work investigates the magnitude and spatial distribution of these tidal signals, which are typically smaller than 1 cmin the open ocean but can reach tens of centimeters in the …


Decision Support System For The Design And Planning Of Low-Impact Development Practices: The Case Of Seoul, Jae-Yeol Song, Eun-Sung Chung, Soo Hyun Kim Feb 2018

Decision Support System For The Design And Planning Of Low-Impact Development Practices: The Case Of Seoul, Jae-Yeol Song, Eun-Sung Chung, Soo Hyun Kim

Civil and Environmental Engineering Faculty Publications and Presentations

This study presented the conceptual framework of the water-management analysis module (WMAM) to derive effective physical specifications for the design and planning of low-impact development (LID) practices using the storm-water management model (SWMM). This decision-support system can be used for six LID types and has the following key capabilities: determining relevant LID design parameters within the SWMM that critically influence the hydrological cycle components using a simple sensitivity analysis and determining the best hydrological values for LID planning specification. This study analyzed a highly urbanized university campus as a case study to determine the design and planning specifications for an …


Apprehensive Drought Characteristics Over Iraq: Results Of A Multidecadal Spatiotemporal Assessment, Maysoun Ayad Hameed, Ali Ahmadalipour, Hamid Moradkhani Feb 2018

Apprehensive Drought Characteristics Over Iraq: Results Of A Multidecadal Spatiotemporal Assessment, Maysoun Ayad Hameed, Ali Ahmadalipour, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

Drought is an extreme climate phenomenon that happens slowly and periodically threatens the environmental and socio-economic sectors. Iraq is one of the countries in the Middle East that has been dealing with serious drought-related issues in the 21st century. Here, we investigate meteorological drought across Iraq from 1948 to 2009 at 0.25° spatial resolution. The Standardized Precipitation Evapotranspiration Index (SPEI) has been utilized as a multi-scalar drought index accounting for the effects of temperature variability on drought. Four of the main characteristics of drought including extent, intensity, frequency and duration are studied and the associated spatiotemporal patterns are investigated for …


A Bayesian Hierarchical Approach To Multivariate Nonstationary Hydrologic Frequency Analysis, C. Bracken, K. D. Holman, B. Rajagopalan, Hamid Moradkhani Jan 2018

A Bayesian Hierarchical Approach To Multivariate Nonstationary Hydrologic Frequency Analysis, C. Bracken, K. D. Holman, B. Rajagopalan, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

We present a general Bayesian hierarchical framework for conducting nonstationary frequency analysis of multiple hydrologic variables. In this, annual maxima from each variable are assumed to follow a generalized extreme value (GEV) distribution in which the location parameter is allowed to vary in time. A Gaussian elliptical copula is used to model the joint distribution of all variables. We demonstrate the utility of this framework with a joint frequency analysis model of annual peak snow water equivalent (SWE), annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado, USA. Indices of largescale climate drivers—El Ni~no Southern …


A Comparative Assessment Of Projected Meteorological And Hydrological Droughts: Elucidating The Role Of Temperature, Ali Ahmadalipour, Hamid Moradkhani, Mehmet C. Demirel Oct 2017

A Comparative Assessment Of Projected Meteorological And Hydrological Droughts: Elucidating The Role Of Temperature, Ali Ahmadalipour, Hamid Moradkhani, Mehmet C. Demirel

Civil and Environmental Engineering Faculty Publications and Presentations

The changing climate and the associated future increases in temperature are expected to have impacts on drought characteristics and hydrologic cycle. This paper investigates the projected changes in spatiotemporal characteristics of droughts and their future attributes over the Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed using two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 models from two future scenarios (RCP4.5 and RCP8.5) for 30 years of historical period (1970–1999) and 90 years of future projections (2010–2099). Hydrologic modeling is conducted using the Precipitation Runoff Modeling System (PRMS) as a …


Time Varying Parameter Models For Catchments With Land Use Change: The Importance Of Model Structure, Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, Hamid Moradkhani Jul 2017

Time Varying Parameter Models For Catchments With Land Use Change: The Importance Of Model Structure, Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

Rapid population and economic growth in South-East-Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modelling methodologies capable of handling changing land use conditions are therefore becoming ever more important, and are receiving increasing attention from hydrologists. A recently developed Data Assimilation based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium sized catchment (2880 km²) in Northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen …


Using An Altimeter-Derived Internal Tide Model To Remove Tides From In Situ Data, Edward D. Zaron, Richard D. Ray May 2017

Using An Altimeter-Derived Internal Tide Model To Remove Tides From In Situ Data, Edward D. Zaron, Richard D. Ray

Civil and Environmental Engineering Faculty Publications and Presentations

Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal …


Remote Measurements Of Tides And River Slope Using An Airborne Lidar Instrument, Austin S. Hudson, Stefan A. Talke, Ruth Branch, Chris Chickadel, Gordon Farquharson, Andrew Jessup Apr 2017

Remote Measurements Of Tides And River Slope Using An Airborne Lidar Instrument, Austin S. Hudson, Stefan A. Talke, Ruth Branch, Chris Chickadel, Gordon Farquharson, Andrew Jessup

Civil and Environmental Engineering Faculty Publications and Presentations

Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based …


Mass Exchange Dynamics Of Surface And Subsurface Oil In Shallow-Water Transport, Saeed Moghimi, Jorge Ramirez, Juan M. Restrepo, Shankar Venkataramani Mar 2017

Mass Exchange Dynamics Of Surface And Subsurface Oil In Shallow-Water Transport, Saeed Moghimi, Jorge Ramirez, Juan M. Restrepo, Shankar Venkataramani

Civil and Environmental Engineering Faculty Publications and Presentations

We formulate a model for the mass exchange between oil at and below the sea surface. This is a particularly important aspect of modeling oil spills. Surface and subsurface oil have different chemical and transport characteristics and lumping them together would compromise the accuracy of the resulting model. Without observational or computational constraints, it is thus not possible to quantitatively predict oil spills based upon partial field observations of surface and/or sub-surface oil. The primary challenge in capturing the mass exchange is that the principal mechanisms are on the microscale. This is a serious barrier to developing practical models for …


Using Satellite Observations To Characterize The Response Of Estuarine Turbidity Maxima To External Forcing, Austin S. Hudson, Stefan A. Talke, David A. Jay Mar 2017

Using Satellite Observations To Characterize The Response Of Estuarine Turbidity Maxima To External Forcing, Austin S. Hudson, Stefan A. Talke, David A. Jay

Civil and Environmental Engineering Faculty Publications and Presentations

This study explores the spatial and temporal character of turbidity maxima in the Columbia River Estuary (CRE) using satellite observations. Surface reflectance data measured by the Moderate Imaging Spectroradiometer (MODIS) were calibrated against in situ measurements of surface turbidity (R2 = 0.85 for 205 measurements). More than 1500 satellite images from 2000 to 2015 were then conditionally sampled to explore the physical processes that drive the spatial distribution of the turbidity field. We find satellite measurements are able to describe seasonal, spring–neap, and spatial features of the estuarine turbidity maxima (ETM) that are not easily observable by other means. System-wide …


Mapping The Nonstationary Internal Tide With Satellite Altimetry, Edward Zaron Jan 2017

Mapping The Nonstationary Internal Tide With Satellite Altimetry, Edward Zaron

Civil and Environmental Engineering Faculty Publications and Presentations

t Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and …


Multi-Instrument Comparison And Compilation Of Non-Methane Organic Gas Emissions From Biomass Burning And Implications For Smoke-Derived Secondary Organic Aerosol Precursors, Lindsay E. Hatch, Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando, Kelley C. Barsanti Jan 2017

Multi-Instrument Comparison And Compilation Of Non-Methane Organic Gas Emissions From Biomass Burning And Implications For Smoke-Derived Secondary Organic Aerosol Precursors, Lindsay E. Hatch, Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando, Kelley C. Barsanti

Civil and Environmental Engineering Faculty Publications and Presentations

Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-offlight mass spectrometry (GC X GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GCMS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments …


Sea-Level Rise Induced Amplification Of Coastal Protection Design Heights, Arne Arns, Soenke Dangendorf, Juergen Jensen, Stefan Talke, Jens Bender, Charitha Pattiaratchi Jan 2017

Sea-Level Rise Induced Amplification Of Coastal Protection Design Heights, Arne Arns, Soenke Dangendorf, Juergen Jensen, Stefan Talke, Jens Bender, Charitha Pattiaratchi

Civil and Environmental Engineering Faculty Publications and Presentations

Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a …


Tidal-Fluvial And Estuarine Processes In The Lower Columbia River: Ii. Water Level Models, Floodplain Wetland Inundation, And System Zones, David A. Jay, Amy B. Borde, Heida Diefenderfer Sep 2016

Tidal-Fluvial And Estuarine Processes In The Lower Columbia River: Ii. Water Level Models, Floodplain Wetland Inundation, And System Zones, David A. Jay, Amy B. Borde, Heida Diefenderfer

Civil and Environmental Engineering Faculty Publications and Presentations

Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland …


Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce Jul 2016

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids …


A Novel Methodology For Spatial Damage Detection And Imaging Using A Distributed Carbon Nanotube-Based Composite Sensor Combined With Electrical Impedance Tomography, Hongbo Dai, Gerard J. Gallo, Thomas Schumacher, Erik T. Thostenson Mar 2016

A Novel Methodology For Spatial Damage Detection And Imaging Using A Distributed Carbon Nanotube-Based Composite Sensor Combined With Electrical Impedance Tomography, Hongbo Dai, Gerard J. Gallo, Thomas Schumacher, Erik T. Thostenson

Civil and Environmental Engineering Faculty Publications and Presentations

This paper describes a novel non-destructive evaluation methodology for imaging of damage in composite materials using the electrical impedance tomography (EIT) technique applied to a distributed carbon nanotube-based sensor. The sensor consists of a nonwoven aramid fabric, which was first coated with nanotubes using a solution casting approach and then infused with epoxy resin through the vacuum assisted resin transfer molding technique. Finally, this composite sensor is cured to become a mechanically-robust, electromechanically-sensitive, and highly customizable distributed two-dimensional sensor which can be adhered to virtually any substrate. By assuming that damage on the sensor directly affects its conductivity, a difference …


Exploring, Exploiting And Evolving Diversity Of Aquatic Ecosystem Models: A Community Perspective, Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A. Schep, Martin Schmid, Huub Scholten, Sven Teurlincx, Dennis Trolle, Tineke A. Troost, Anne A. Van Dam, Luuk P.A. Van Gerven, Mariska Weijerman, Scott A. Wells, Wolf M. Mooij Dec 2015

Exploring, Exploiting And Evolving Diversity Of Aquatic Ecosystem Models: A Community Perspective, Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A. Schep, Martin Schmid, Huub Scholten, Sven Teurlincx, Dennis Trolle, Tineke A. Troost, Anne A. Van Dam, Luuk P.A. Van Gerven, Mariska Weijerman, Scott A. Wells, Wolf M. Mooij

Civil and Environmental Engineering Faculty Publications and Presentations

Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of …


Nonstationary Internal Tides Observed Using Dual-Satellite Altimetry, Edward D. Zaron Sep 2015

Nonstationary Internal Tides Observed Using Dual-Satellite Altimetry, Edward D. Zaron

Civil and Environmental Engineering Faculty Publications and Presentations

Dual-satellite crossover data from the Jason-2 and Cryosat-2 altimeter missions are used in a novel approach to quantify stationary and nonstationary tides from time-lagged mean square sea surface height (SSH) differences, computed for lags from 1 to 1440 h (60 days). The approach is made feasible by removing independent estimates of the stationary tide and mesoscale SSH variance, which greatly reduces the sampling error of the SSH statistics. For the semidiurnal tidal band, the stationary tidal variance is approximately 0.73 cm(2), and the nonstationary variance is about 0.33 cm(2), or 30% of the total. The temporal correlation of the nonstationary …