Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Global Blue Carbon Accumulation In Tidal Wetlands Increases With Climate Change, Faming Wang, Christian J. Sanders, (...), Matthew L. Kirwan, Et Al Jan 2021

Global Blue Carbon Accumulation In Tidal Wetlands Increases With Climate Change, Faming Wang, Christian J. Sanders, (...), Matthew L. Kirwan, Et Al

VIMS Articles

Coastal tidal wetlands produce and accumulate significant amounts of organic carbon (C) that help to mitigate climate change. However, previous data limitations have prevented a robust evaluation of the global rates and mechanisms driving C accumulation. Here, we go beyond recent soil C stock estimates to reveal global tidal wetland C accumulation and predict changes under relative sea level rise, temperature and precipitation. We use data from literature study sites and our new observations spanning wide latitudinal gradients and 20 countries. Globally, tidal wetlands accumulate 53.65 (95%CI: 48.52–59.01) Tg C yr−1, which is∼30% of the organic C buried on the …


Sea Level Rise May Increase Extinction Risk Of A Saltmarsh Ontogenetic Habitat Specialist, David S. Johnson, Bethany L. Williams Aug 2017

Sea Level Rise May Increase Extinction Risk Of A Saltmarsh Ontogenetic Habitat Specialist, David S. Johnson, Bethany L. Williams

VIMS Articles

Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood-intolerant species such as Spartina patens to the flood-tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails …