Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Utah State University

Series

2015

Gravity waves

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire, Michael Taylor, Yucheng Zhao, James M. Russell Iii Jun 2015

Satellite Measurements Of Mesospheric Gravity Wave Temperature Variances Over The Andes, Jonathan Pugmire, Michael Taylor, Yucheng Zhao, James M. Russell Iii

Graduate Student Posters

Utah State University’s Mesospheric Temperature Mapper (MTM) has operated continuously at the Andes Lidar Observatory on Cerro Pachon, Chile (30.3° S, 70.7° S) since August 2009. Its purpose is to quantify gravity wave (GW) activity as observed in OH rotational temperature measurements in the mesosphere at an altitude of ~87 km with a particular interest in investigating short period GWs and their seasonal variability. 5.5 years data to date.

The SABER instrument aboard the TIMED satellite provides complimentary data to measure temperature variances and GW potential energy (PE) to quantify the small-scale GWs propagating up into the mesosphere, and lower …


Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi Feb 2015

Recent Progress In Mesospheric Gravity Wave Studies Using Nigthglow Imaging System, Michael J. Taylor, William R. Pendleton Jr., Pierre-Dominique Pautet, Yucheng Zhao, Chris Olsen, Hema Karnam Surendra Babu, Amauri F. Medeiros, Hisao Takahashi

Publications

A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from ~ 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( ~ 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art …