Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Dayton

Series

2020

Discipline
Keyword
Publication

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

The Tolerance Of Shewanella Woodyi For Electric Potentials And Heavy Metals As Biofilms, Christopher Thomas Mortensen Dec 2020

The Tolerance Of Shewanella Woodyi For Electric Potentials And Heavy Metals As Biofilms, Christopher Thomas Mortensen

Honors Theses

Shewanella woodyi is a bioluminescent marine organism that is known to be metal tolerant and modulate the intensity of its luminescence with electrochemical potential. The viability of S. woodyi as a bioreporter for the toxic heavy metal zinc, copper, and silver was analyzed. Biofilms of S. woodyi was grown on marine broth agar plates and then exposed to various concentrations of each metal ion to evaluate biofilm response to the metal ions that were generated from an operating short circuited electrode containing either Zn, Cu, or Ag metal. The ability of the bacteria to tolerate the heavy metals and continue …


Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari Dec 2020

Conditional Generative Adversarial Network Demosaicing Strategy For Division Of Focal Plane Polarimeters, Garrett Sargent, Bradley M. Ratliff, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Division of focal plane (DoFP), or integrated microgrid polarimeters, typically consist of a 2 × 2 mosaic of linear polarization filters overlaid upon a focal plane array sensor and obtain temporally synchronized polarized intensity measurements across a scene, similar in concept to a Bayer color filter array camera. However, the resulting estimated polarimetric images suffer a loss in resolution and can be plagued by aliasing due to the spatially-modulated microgrid measurement strategy. Demosaicing strategies have been proposed that attempt to minimize these effects, but result in some level of residual artifacts. In this work we propose a conditional generative adversarial …


Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru Dec 2020

Transfer-To-Transfer Learning Approach For Computer Aided Detection Of Covid-19 In Chest Radiographs, Barath Narayanan Narayanan, Russell C. Hardie, Vignesh Krishnaraja, Christina Karam, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

The coronavirus disease 2019 (COVID-19) global pandemic has severely impacted lives across the globe. Respiratory disorders in COVID-19 patients are caused by lung opacities similar to viral pneumonia. A Computer-Aided Detection (CAD) system for the detection of COVID-19 using chest radiographs would provide a second opinion for radiologists. For this research, we utilize publicly available datasets that have been marked by radiologists into two-classes (COVID-19 and non-COVID-19). We address the class imbalance problem associated with the training dataset by proposing a novel transfer-to-transfer learning approach, where we break a highly imbalanced training dataset into a group of balanced mini-sets and …


Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles Dec 2020

Polarization-Selective Modulation Of Supercavity Resonances Originating From Bound States In The Continuum, Chan Kyaw, Riad Yahiaoui, Joshua A. Burrow, Viet Tran, Kyron Keelen, Wesley Sims, Eddie C. Red, Willie S. Rockward, Mikkel A. Thomas, Andrew M. Sarangan, Imad Agha, Thomas A. Searles

Electro-Optics and Photonics Faculty Publications

Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling …


Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau Nov 2020

Atmospheric Turbulence Study With Deep Machine Learning Of Intensity Scintillation Patterns, Artem V. Vorontsov, Mikhail A. Vorontsov, Grigorii A. Fillimonov, Ernst Polnau

Electro-Optics and Photonics Faculty Publications

A new paradigm for machine learning-inspired atmospheric turbulence sensing is developed and applied to predict the atmospheric turbulence refractive index structure parameter using deep neural network (DNN)-based processing of short-exposure laser beam intensity scintillation patterns obtained with both: experimental measurement trials conducted over a 7 km propagation path, and imitation of these trials using wave-optics numerical simulations. The developed DNN model was optimized and evaluated in a set of machine learning experiments. The results obtained demonstrate both good accuracy and high temporal resolution in sensing. The machine learning approach was also employed to challenge the validity of several eminent atmospheric …


Divide And Slide: Layer-Wise Refinement For Output Range Analysis Of Deep Neural Networks, Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, Qi Zhu Nov 2020

Divide And Slide: Layer-Wise Refinement For Output Range Analysis Of Deep Neural Networks, Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, Qi Zhu

Computer Science Faculty Publications

In this article, we present a layer-wise refinement method for neural network output range analysis. While approaches such as nonlinear programming (NLP) can directly model the high nonlinearity brought by neural networks in output range analysis, they are known to be difficult to solve in general. We propose to use a convex polygonal relaxation (overapproximation) of the activation functions to cope with the nonlinearity. This allows us to encode the relaxed problem into a mixed-integer linear program (MILP), and control the tightness of the relaxation by adjusting the number of segments in the polygon. Starting with a segment number of …


Anatomy Of The Edelman: Measuring The World’S Best Analytics Projects, Michael F. Gorman, Lakshminarayana Nittala, Jeffrey M. Aldenb Oct 2020

Anatomy Of The Edelman: Measuring The World’S Best Analytics Projects, Michael F. Gorman, Lakshminarayana Nittala, Jeffrey M. Aldenb

MIS/OM/DS Faculty Publications

Each year, the INFORMS Edelman Award celebrates the best and most impactful implementations of operations research, management science, and analytics. As the Edelman Award approaches its 50-year mark, we provide a history and characterization of the award’s finalists and winners. We provide some basic descriptive analytics about the participating organizations and authors, the impact of their work, and the methods they employed. We also conduct predictive analytics on finalist submissions, gauging contributors to success in establishing winning entries. We find that predicting Edelman winners a priori is extremely difficult; however, given a set of finalists, predictive models based on monetary …


Quasilinearization Applied To Boundary Value Problems At Resonance For Riemann-Liouville Fractional Differential Equations, Paul W. Eloe, Jaganmohan Jonnalagadda Oct 2020

Quasilinearization Applied To Boundary Value Problems At Resonance For Riemann-Liouville Fractional Differential Equations, Paul W. Eloe, Jaganmohan Jonnalagadda

Mathematics Faculty Publications

The quasilinearization method is applied to a boundary value problem at resonance for a Riemann-Liouville fractional differential equation. Under suitable hypotheses, the method of upper and lower solutions is employed to establish uniqueness of solutions. A shift method, coupled with the method of upper and lower solutions, is applied to establish existence of solutions. The quasilinearization algorithm is then applied to obtain sequences of lower and upper solutions that converge monotonically and quadratically to the unique solution of the boundary value problem at resonance.


A Data Analytic Framework For Physical Fatigue Management Using Wearable Sensors, Zahra Sedighi Maman, Ying-Ju Chen, Amir Baghdadi, Seamus Lombardo, Lora A. Cavuoto, Fadel M. Megahed Oct 2020

A Data Analytic Framework For Physical Fatigue Management Using Wearable Sensors, Zahra Sedighi Maman, Ying-Ju Chen, Amir Baghdadi, Seamus Lombardo, Lora A. Cavuoto, Fadel M. Megahed

Mathematics Faculty Publications

The use of expert systems in optimizing and transforming human performance has been limited in practice due to the lack of understanding of how an individual's performance deteriorates with fatigue accumulation, which can vary based on both the worker and the workplace conditions. As a first step toward realizing the human-centered approach to artificial intelligence and expert systems, this paper lays the foundation for a data analytic approach to managing fatigue in physically-demanding workplaces. The proposed framework capitalizes on continuously collected human performance data from wearable sensor technologies, and is centered around four distinct phases of fatigue: (a) detection, where …


A Two-Stage Machine Learning Framework To Predict Heart Transplantation Survival Probabilities Over Time With A Monotonic Probability Constraint, Hamidreza Ahady Dolatsaraa, Ying-Ju (Tessa) Chen, Christy Evans, Ashish Gupta, Fadel M. Megahed Oct 2020

A Two-Stage Machine Learning Framework To Predict Heart Transplantation Survival Probabilities Over Time With A Monotonic Probability Constraint, Hamidreza Ahady Dolatsaraa, Ying-Ju (Tessa) Chen, Christy Evans, Ashish Gupta, Fadel M. Megahed

Mathematics Faculty Publications

The overarching goal of this paper is to develop a modeling framework that can be used to obtain personalized, data-driven and monotonically constrained probability curves. This research is motivated by the important problem of improving the predictions for organ transplantation outcomes, which can inform updates made to organ allocation protocols, post-transplantation care pathways, and clinical resource utilization. In pursuit of our overarching goal and motivating problem, we propose a novel two-stage machine learning-based framework for obtaining monotonic probabilities over time. The first stage uses the standard approach of using independent machine learning models to predict transplantation outcomes for each time-period …


Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills Aug 2020

Artificial Neural Network Discovery Of A Switchable Metasurface Reflector, J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills

Electro-Optics and Photonics Faculty Publications

Optical materials engineered to dynamically and selectively manipulate electromag- netic waves are essential to the future of modern optical systems. In this paper, we simulate various metasurface configurations consisting of periodic 1D bars or 2D pillars made of the ternary phase change material Ge2Sb2Te5 (GST). Dynamic switching behavior in reflectance is exploited due to a drastic refractive index change between the crystalline and amorphous states of GST. Selectivity in the reflection and transmission spectra is manipulated by tailoring the geometrical parameters of the metasurface. Due to the immense number of possible metasurface configurations, we train deep neural networks capable of …


Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru Apr 2020

Ensemble Malware Classification System Using Deep Neural Networks, Barath Narayanan Narayanan, Venkata Salini Priyamvada Davuluru

Electrical and Computer Engineering Faculty Publications

With the advancement of technology, there is a growing need of classifying malware programs that could potentially harm any computer system and/or smaller devices. In this research, an ensemble classification system comprising convolutional and recurrent neural networks is proposed to distinguish malware programs. Microsoft's Malware Classification Challenge (BIG 2015) dataset with nine distinct classes is utilized for this study. This dataset contains an assembly file and a compiled file for each malware program. Compiled files are visualized as images and are classified using Convolutional Neural Networks (CNNs). Assembly files consist of machine language opcodes that are distinguished among classes using …


Quantitative Trait Loci (Qtl) Underlying Phenotypic Variation In Bioethanol-Related Processes In Neurospora Crassa, Joshua C. Waters, Deval Jhaveri, Justin C. Biffinger, Kwangwon Lee Feb 2020

Quantitative Trait Loci (Qtl) Underlying Phenotypic Variation In Bioethanol-Related Processes In Neurospora Crassa, Joshua C. Waters, Deval Jhaveri, Justin C. Biffinger, Kwangwon Lee

Chemistry Faculty Publications

Bioethanol production from lignocellulosic biomass has received increasing attention over the past decade. Many attempts have been made to reduce the cost of bioethanol produc- tion by combining the separate steps of the process into a single-step process known as consolidated bioprocessing. This requires identification of organisms that can efficiently decompose lignocellulose to simple sugars and ferment the pentose and hexose sugars lib- erated to ethanol. There have been many attempts in engineering laboratory strains by add- ing new genes or modifying genes to expand the capacity of an industrial microorganism. There has been less attention in improving bioethanol-related processes …


Three Point Boundary Value Problems For Ordinary Differential Equations, Uniqueness Implies Existence, Paul W. Eloe, Johnny Henderson, Jeffrey T. Neugebauer Jan 2020

Three Point Boundary Value Problems For Ordinary Differential Equations, Uniqueness Implies Existence, Paul W. Eloe, Johnny Henderson, Jeffrey T. Neugebauer

Mathematics Faculty Publications

We consider a family of three point n − 2, 1, 1 conjugate boundary value problems for nth order nonlinear ordinary differential equations and obtain conditions in terms of uniqueness of solutions imply existence of solutions. A standard hypothesis that has proved effective in uniqueness implies existence type results is to assume uniqueness of solutions of a large family of n−point boundary value problems. Here, we replace that standard hypothesis with one in which we assume uniqueness of solutions of large families of two and three point boundary value problems. We then close the paper with verifiable conditions on the …


Analysis Of Weights In Central Difference Formulas For Approximation Of The First Derivative, Preston R. Boorsma Jan 2020

Analysis Of Weights In Central Difference Formulas For Approximation Of The First Derivative, Preston R. Boorsma

Undergraduate Mathematics Day: Past Content

Manipulations of Taylor series expansions of increasing numbers of terms yield finite difference approximations of derivatives with increasing rates of convergence. In this paper, we consider central difference approximations of arbitrary order of accuracy. We derive explicit formulas for the weights of terms and explore their limits for increasing orders of accuracy.


Climbing The Branches Of The Graceful Tree Conjecture, Rachelle Bouchat, Patrick Cone Jan 2020

Climbing The Branches Of The Graceful Tree Conjecture, Rachelle Bouchat, Patrick Cone

Undergraduate Mathematics Day: Past Content

This paper presents new ways to look at proving the Graceful Tree Conjecture, which was first posed by Kotzig, Ringel, and Rosa in 1967. In this paper, we will define an adjacency diagram for a graph, and we will use this diagram to show that several classes of trees are graceful.


Derivation Of The (Closed-Form) Particular Solution Of The Poisson’S Equation In 3d Using Oscillatory Radial Basis Function, Anup R. Lamichhane, Steven Manns Jan 2020

Derivation Of The (Closed-Form) Particular Solution Of The Poisson’S Equation In 3d Using Oscillatory Radial Basis Function, Anup R. Lamichhane, Steven Manns

Undergraduate Mathematics Day: Past Content

Partial differential equations (PDEs) are useful for describing a wide variety of natural phenomena, but analytical solutions of these PDEs can often be difficult to obtain. As a result, many numerical approaches have been developed. Some of these numerical approaches are based on the particular solutions. Derivation of these particular solutions are challenging. This work is about how the Laplace operator can be written in a more convenient form when it is applied to radial basis functions and then use this form to derive the (closed-form) particular solution of the Poisson’s equation in 3D with the oscillatory radial function in …


Corrections To ‘‘Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping’’, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel Jan 2020

Corrections To ‘‘Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping’’, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel

Electrical and Computer Engineering Faculty Publications

In the above article [1], Figure 2 was incorrect. Unfortunately, we mixed the color label of "CONV $\to $ BN $\to $ ReLu" and "Unpooling" in the CNN structure section of Figure 2. The color label of "CONV $\to $ BN $\to $ ReLu" should be orange while the color label of "Unpooling" should be green. Also, the word "Decoder" is misspelled. That same figure with the same error is also used for the graphic abstract. The corrected figure is given here. None of the sections in the figure is modified. The only change is in the color label of …


Mitosisnet: End-To-End Mitotic Cell Detection By Multi-Task Learning, Md Zahangir Alom, Theus Aspiras, Tarek M. Taha, Tj Bowen, Vijayan K. Asari Jan 2020

Mitosisnet: End-To-End Mitotic Cell Detection By Multi-Task Learning, Md Zahangir Alom, Theus Aspiras, Tarek M. Taha, Tj Bowen, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Mitotic cell detection is one of the challenging problems in the field of computational pathology. Currently, mitotic cell detection and counting are one of the strongest prognostic markers for breast cancer diagnosis. The clinical visual inspection on histology slides is tedious, error prone, and time consuming for the pathologist. Thus, automatic mitotic cell detection approaches are highly demanded in clinical practice. In this paper, we propose an end-to-end multi-task learning system for mitosis detection from pathological images which is named"MitosisNet". MitosisNet consist of segmentation, detection, and classification models where the segmentation, and detection models are used for mitosis reference region …


Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel Jan 2020

Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel

Electrical and Computer Engineering Faculty Publications

Rising global temperatures over the past decades is directly affecting glacier dynamics. To understand glacier fluctuations and document regional glacier-state trends, glacier-boundary detection is necessary. Debris-covered glacier (DCG) mapping, however, is notoriously difficult using conventional geospatial technology methods. Therefore, in this research for automated DCG mapping, we evaluate the utility of a convolutional neural network (CNN), which is a deep learning feed-forward neural network. The CNN inputs include Landsat satellite images, an Advanced Land Observation Satellite (ALOS) digital elevation model (DEM) and DEM-derived land-surface parameters. Our CNN based deep-learning approach named GlacierNet was designed by appropriately choosing the type, number …


Ev Charging Behavior Analysis Using Hybrid Intelligence For 5g Smart Grid, Yi Shen, Wei Fang, Feng Ye, Michel Kadoch Jan 2020

Ev Charging Behavior Analysis Using Hybrid Intelligence For 5g Smart Grid, Yi Shen, Wei Fang, Feng Ye, Michel Kadoch

Electrical and Computer Engineering Faculty Publications

With the development of the Internet of Things (IoT) and the widespread use of electric vehicles (EV), vehicle-to-grid (V2G) has sparked considerable discussion as an energy-management technology. Due to the inherently high maneuverability of EVs, V2G systems must provide on-demand service for EVs. Therefore, in this work, we propose a hybrid computing architecture based on fog and cloud with applications in 5G-based V2G networks. This architecture allows the bi-directional flow of power and information between schedulable EVs and smart grids (SGs) to improve the quality of service and cost-effectiveness of energy service providers. However, it is very important to select …


Nnv: The Neural Network Verification Tool For Deep Neural Networks And Learning-Enabled Cyber-Physical Systems, Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang, Stanley Bak, Taylor T. Johnson Jan 2020

Nnv: The Neural Network Verification Tool For Deep Neural Networks And Learning-Enabled Cyber-Physical Systems, Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang, Stanley Bak, Taylor T. Johnson

Computer Science Faculty Publications

This paper presents the Neural Network Verification (NNV) software tool, a set-based verification framework for deep neural networks (DNNs) and learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection of reachability algorithms that make use of a variety of set representations, such as polyhedra, star sets, zonotopes, and abstract-domain representations. NNV supports both exact (sound and complete) and over-approximate (sound) reachability algorithms for verifying safety and robustness properties of feed-forward neural networks (FFNNs) with various activation functions. For learning-enabled CPS, such as closed-loop control systems incorporating neural networks, NNV provides exact and over-approximate reachability analysis schemes for linear …


Stochastic Technique For Solutions Of Non-Linear Fin Equation Arising In Thermal Equilibrium Model, Iftikhar Ahmad, Hina Qureshi, Muhammad Bilal, Muhammad Usman Jan 2020

Stochastic Technique For Solutions Of Non-Linear Fin Equation Arising In Thermal Equilibrium Model, Iftikhar Ahmad, Hina Qureshi, Muhammad Bilal, Muhammad Usman

Mathematics Faculty Publications

In this study, a stochastic numerical technique is used to investigate the numerical solution of heat transfer temperature distribution system using feed forward artificial neural networks. Mathematical model of fin equation is formulated with the help of artificial neural networks. The effect of the heat on a rectangular fin with thermal conductivity and temperature de-pendent internal heat generation is calculated through neural networks optimization with optimizers like active set technique, interior point technique, pattern search, genetic algorithm and a hybrid approach of pattern search - interior point technique, genetic algorithm - active set technique, genetic algorithm - interior point technique, …


Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb Jan 2020

Ensemble Lung Segmentation System Using Deep Neural Networks, Redha A. Ali, Russell C. Hardie, Hussin K. Ragb

Electrical and Computer Engineering Faculty Publications

Lung segmentation is a significant step in developing computer-aided diagnosis (CAD) using Chest Radiographs (CRs). CRs are used for diagnosis of the 2019 novel coronavirus disease (COVID-19), lung cancer, tuberculosis, and pneumonia. Hence, developing a Computer-Aided Detection (CAD) system would provide a second opinion to help radiologists in the reading process, increase objectivity, and reduce the workload. In this paper, we present the implementation of our ensemble deep learning model for lung segmentation. This model is based on the original DeepLabV3+, which is the extended model of DeepLabV3. Our model utilizes various architectures as a backbone of DeepLabV3+, such as …