Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian Oct 2023

Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian

I-GUIDE Forum

Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or …


Understanding The Influence Of Perceptual Noise On Visual Flanker Effects Through Bayesian Model Fitting, Jordan Deakin, Dietmar Heinke May 2022

Understanding The Influence Of Perceptual Noise On Visual Flanker Effects Through Bayesian Model Fitting, Jordan Deakin, Dietmar Heinke

MODVIS Workshop

No abstract provided.


An Extensible Geospatial Data Framework (Geoedf) For Fair Science, Carol Song, Rajesh Kalyanam, Lan Zhao Nov 2019

An Extensible Geospatial Data Framework (Geoedf) For Fair Science, Carol Song, Rajesh Kalyanam, Lan Zhao

Purdue GIS Day

The growing urgency in dealing with the 21st century’s grand challenges associated with increasing population, food and water security, frequently occurring natural disasters, and changing climate demands innovative, collaborative, and multidisciplinary solutions for sustainability and resilience. However, scientific data, especially geospatial data, presents significant barriers to the effective access, use and sharing of data as they come in large volumes, from different sources, and with widely varying formats, resolutions, or annotation schemas that can differ among disciplines or even research groups. This presentation describes a recently funded NSF CSSI project to develop an open source, extensible geospatial data framework (GeoEDF), …


The Fluid Representations Of Networks Estimating Liquid Viscosity, Jan Jaap R. Van Assen, Shin'ya Nishida, Roland W. Fleming May 2019

The Fluid Representations Of Networks Estimating Liquid Viscosity, Jan Jaap R. Van Assen, Shin'ya Nishida, Roland W. Fleming

MODVIS Workshop

No abstract provided.


Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick Aug 2018

Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick

The Summer Undergraduate Research Fellowship (SURF) Symposium

Just as a human might struggle to interpret another human’s handwriting, a computer vision program might fail when asked to perform one task in two different domains. To be more specific, visualize a self-driving car as a human driver who had only ever driven on clear, sunny days, during daylight hours. This driver – the self-driving car – would inevitably face a significant challenge when asked to drive when it is violently raining or foggy during the night, putting the safety of its passengers in danger. An extensive understanding of the data we use to teach computer vision models – …


Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller Aug 2018

Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pump failure is a general concerned problem in the hydraulic field. Once happening, it will cause a huge property loss and even the life loss. The common methods to prevent the occurrence of pump failure is by preventative maintenance and breakdown maintenance, however, both of them have significant drawbacks. This research focuses on the axial piston pump and provides a new solution by the prognostic of pump failure using the classification of machine learning. Different kinds of sensors (temperature, acceleration and etc.) were installed into a good condition pump and three different kinds of damaged pumps to measure 10 of …


Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell Aug 2018

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ceramic and semiconductor research is limited in its ability to create holistic representations of data in concise, easily-accessible file formats or visual data representations. These materials are used in everyday electronics, and optimizing their electrical and physical properties is important for developing more advanced computational technologies. There is a desire to understand how changing the composition of the ceramic alters the shape and structure of the grown crystals. However, few accessible tools exist to generate a dataset with the proper organization to understand correlations between grain orientation and crystallographic orientation. This paper outlines an approach to analyzing the crystal structure …


Improving The Accuracy For The Long-Term Hydrologic Impact Assessment (L-Thia) Model, Anqi Zhang, Lawrence Theller, Bernard A. Engel Aug 2017

Improving The Accuracy For The Long-Term Hydrologic Impact Assessment (L-Thia) Model, Anqi Zhang, Lawrence Theller, Bernard A. Engel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Urbanization increases runoff by changing land use types from less impervious to impervious covers. Improving the accuracy of a runoff assessment model, the Long-Term Hydrologic Impact Assessment (L-THIA) Model, can help us to better evaluate the potential uses of Low Impact Development (LID) practices aimed at reducing runoff, as well as to identify appropriate runoff and water quality mitigation methods. Several versions of the model have been built over time, and inconsistencies have been introduced between the models. To improve the accuracy and consistency of the model, the equations and parameters (primarily curve numbers in the case of this model) …


Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and argon. This …


Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson Aug 2017

Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson

The Summer Undergraduate Research Fellowship (SURF) Symposium

In process of analyzing large amounts of quantitative data, it can be quite time consuming and challenging to uncover populations of interest contained amongst the background data. Therefore, the ability to partially automate the process while gaining additional insight into the interdependencies of key parameters via machine learning seems quite appealing. As of now, the primary means of reviewing the data is by manually plotting data in different parameter spaces to recognize key features, which is slow and error prone. In this experiment, many well-known machine learning algorithms were applied to a dataset to attempt to semi-automatically identify known populations, …


Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan Aug 2017

Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomistic and molecular simulations have become an important research field due to the progress made in computer performance and the necessity of new and improved materials. Despite this, first principle simulations of large molecules are still not possible because the high computational time and resources required. Other methods, such as molecular dynamics, allow the simplification of calculations by defining energy terms to describe multiple atom interactions without compromising accuracy significantly. A group of these energy terms is called a force field, and each force field has its own descriptions and parameters. The objective of this project was to develop a …


Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …


Predicting Locations Of Pollution Sources Using Convolutional Neural Networks, Yiheng Chi, Nickolas D. Winovich, Guang Lin Aug 2017

Predicting Locations Of Pollution Sources Using Convolutional Neural Networks, Yiheng Chi, Nickolas D. Winovich, Guang Lin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pollution is a severe problem today, and the main challenge in water and air pollution controls and eliminations is detecting and locating pollution sources. This research project aims to predict the locations of pollution sources given diffusion information of pollution in the form of array or image data. These predictions are done using machine learning. The relations between time, location, and pollution concentration are first formulated as pollution diffusion equations, which are partial differential equations (PDEs), and then deep convolutional neural networks are built and trained to solve these PDEs. The convolutional neural networks consist of convolutional layers, reLU layers …


Nondestructive Testing And Structural Health Monitoring Based On Adams And Svm Techniques, Gang Jiang, Yi Ming Deng, Ji Tai Niu Oct 2016

Nondestructive Testing And Structural Health Monitoring Based On Adams And Svm Techniques, Gang Jiang, Yi Ming Deng, Ji Tai Niu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A Parallel 3d Phase-Field Simulation Of Multi-Grain Growth Based On The Full Thread Tree, Ya-Jun Yin, Min Wang, Jian-Xin Zhou, Dun-Ming Liao, Xu Shen, Tao Chen Oct 2016

A Parallel 3d Phase-Field Simulation Of Multi-Grain Growth Based On The Full Thread Tree, Ya-Jun Yin, Min Wang, Jian-Xin Zhou, Dun-Ming Liao, Xu Shen, Tao Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Computer-Aided Design Of Algorithms Of Pulsed Control Of Arc Welding Process Based On Numerical Simulation, Oksana I. Shpigunova, Anatoliy A. Glazunov Oct 2016

Computer-Aided Design Of Algorithms Of Pulsed Control Of Arc Welding Process Based On Numerical Simulation, Oksana I. Shpigunova, Anatoliy A. Glazunov

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Development And Computer Simulation Of A New Combined Energy-Saving Technological Process Of Production Of High-Quality Wire With Sub-Ultrafine-Grained Structure, Abdrakhman Naizabekov, Sergey Lezhnev, Evgeniy Panin, Igor Mazur Oct 2016

Development And Computer Simulation Of A New Combined Energy-Saving Technological Process Of Production Of High-Quality Wire With Sub-Ultrafine-Grained Structure, Abdrakhman Naizabekov, Sergey Lezhnev, Evgeniy Panin, Igor Mazur

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analyzing Sports Training Data With Machine Learning Techniques, Rehana Mahfuz, Zeinab Mourad, Aly El Gamal Aug 2016

Analyzing Sports Training Data With Machine Learning Techniques, Rehana Mahfuz, Zeinab Mourad, Aly El Gamal

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the sports industry, there has not been enough effort in analyzing the personalized monitoring data of athletes collected during training sessions. This research is an attempt to find meaningful patterns in the Purdue Women’s Soccer training data that could help the coach design more efficient training sessions. We are specifically interested in studying this problem as an unsupervised learning problem. Our initial attempt is to cluster the players as well as drills into groups using k-means, c-means and spectral clustering algorithms, combined with feature transformation and reduction steps. These basic algorithms serve as a benchmark to measure performance improvements …


Generalizing The Quantum Dot Lab Towards Arbitrary Shapes And Compositions, Matthew A. Bliss, Prasad Sarangapani, James Fonseca, Gerhard Klimeck Aug 2016

Generalizing The Quantum Dot Lab Towards Arbitrary Shapes And Compositions, Matthew A. Bliss, Prasad Sarangapani, James Fonseca, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

As applications in nanotechnology reach the scale of countable atoms, computer simulation has become a necessity in the understanding of new devices, such as quantum dots. To understand the various optoelectronic properties of these nanoparticles, the Quantum Dot Lab (QDL) has been created and powered by NEMO5 to simulate on multi-scale, multi-physics bases. QDL is easy to use by offering choices of different QD geometries such as shapes and sizes to the users from a predefined menu. The simplicity of use, however, limits the simulation of general QD shapes and compositions. A method to import generic strained crystalline and amorphous …


Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan Aug 2014

Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fitting a model to data is common practice in many fields of science. The models may contain unknown parameters and often, the goal is to obtain good estimates of them. A variety of methods have been developed for this purpose. They often differ in complexity, efficiency and accuracy and some may have very limited applications. Bayesian inference methods have recently become popular for the purpose of calibrating model's parameters. The way they treat unknown quantities is completely different from any classical methods. Even though the unknown quantity is a constant, it is treated as a random variable and the desired …


Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher Aug 2014

Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous (nano) composites, manufactured by the densification of variously sized grains, represent an important and ubiquitous class of technologically relevant materials. Typical grain sizes in such materials range from macroscopic to a few nanometers. The morphology exhibited by such disordered materials is complex and intricately connected with its thermal and electrical transport properties. It is important to quantify the geometric features of these materials and simulate the fabrication process. Additionally, granular materials exhibit complex structural and mechanical properties that crucially govern their reliability during industrial use. In this work, we simulate the densification of soft deformable grains from a low-density …


High-Order Shock Capturing For Computational Aeroacoustics, Samuel Otto, Gregory Blaisdell Oct 2013

High-Order Shock Capturing For Computational Aeroacoustics, Samuel Otto, Gregory Blaisdell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Jet noise is not only an annoyance to passengers and communities near airports, it is a major contributor to hearing loss in veterans who served on aircraft carriers, as well as a significant limiting factor for the growth of commercial airlines. High-fidelity large eddy simulation (LES) is an important tool for analyzing and predicting jet noise; however the utilized non-dissipative high order finite difference schemes produce instabilities at shock waves. Schemes for capturing shock waves, however, are more dissipative and do a poor job preserving turbulent structures and acoustic waves. To maximize the strengths of both approaches, hybrid methods utilize …