Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Toward A Manifold Encoding Neural Responses, Luciano Dyballa, Andra M. Rudzite, Mahmood S. Hoseini, Mishek Thapa, Michael P. Stryker, Greg D. Field, Steven W. Zucker May 2023

Toward A Manifold Encoding Neural Responses, Luciano Dyballa, Andra M. Rudzite, Mahmood S. Hoseini, Mishek Thapa, Michael P. Stryker, Greg D. Field, Steven W. Zucker

MODVIS Workshop

Understanding circuit properties from physiological data presents two challenges: (i) recordings do not reveal connectivity, and (ii) stimuli only exercise circuits to a limited extent. We address these challenges for the mouse visual system with a novel neural manifold obtained using unsupervised algorithms. Each point in our manifold is a neuron; nearby neurons respond similarly in time to similar parts of a stimulus ensemble. This ensemble includes drifting gratings and flows, i.e., patterns resembling what a mouse would “see” running through fields.

Regarding (i), our manifold differs from the standard practice in computational neuroscience: embedding trials in neural coordinates. Topology …


A Dynamical Model Of Binding In Visual Cortex During Incremental Grouping And Search, Daniel Schmid, Daniel A. Braun, Heiko Neumann May 2023

A Dynamical Model Of Binding In Visual Cortex During Incremental Grouping And Search, Daniel Schmid, Daniel A. Braun, Heiko Neumann

MODVIS Workshop

Binding of visual information is crucial for several perceptual tasks. To incrementally group an object, elements in a space-feature neighborhood need to be bound together starting from an attended location (Roelfsema, TICS, 2005). To perform visual search, candidate locations and cued features must be evaluated conjunctively to retrieve a target (Treisman&Gormican, Psychol Rev, 1988). Despite different requirements on binding, both tasks are solved by the same neural substrate. In a model of perceptual decision-making, we give a mechanistic explanation for how this can be achieved. The architecture consists of a visual cortex module and a higher-order thalamic module. While the …


A Two-Layer Model Explains Higher-Order Feature Selectivity Of V2 Neurons, Timothy D. Oleskiw, Justin D. Lieber, J. Anthony Movshon, Eero P. Simoncelli May 2022

A Two-Layer Model Explains Higher-Order Feature Selectivity Of V2 Neurons, Timothy D. Oleskiw, Justin D. Lieber, J. Anthony Movshon, Eero P. Simoncelli

MODVIS Workshop

Neurons in cortical area V2 respond selectively to higher-order visual features, such as the quasi-periodic structure of natural texture. However, a functional account of how V2 neurons build selectivity for complex natural image features from their inputs – V1 neurons locally tuned for orientation and spatial frequency – remains elusive.

We made single-unit recordings in area V2 in two fixating rhesus macaques. We presented stimuli composed of multiple superimposed grating patches that localize contrast energy in space, orientation, and scale. V2 activity is modeled via a two-layer linear-nonlinear network, optimized to use a sparse combination of V1-like outputs to account …


Is The Selective Tuning Model Of Visual Attention Still Relevant?, John K. Tsotsos May 2019

Is The Selective Tuning Model Of Visual Attention Still Relevant?, John K. Tsotsos

MODVIS Workshop

No abstract provided.


Brightness Perception Involves Local Adaptation Opposed By Lateral Interaction, Qasim Zaidi, Romain Bachy, Jose-Manuel Alonso May 2018

Brightness Perception Involves Local Adaptation Opposed By Lateral Interaction, Qasim Zaidi, Romain Bachy, Jose-Manuel Alonso

MODVIS Workshop

No abstract provided.


Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …


Can Cone Signals In The Wild Be Predicted From The Past?, David H. Foster, Iván Marín-Franch May 2017

Can Cone Signals In The Wild Be Predicted From The Past?, David H. Foster, Iván Marín-Franch

MODVIS Workshop

In the natural world, the past is usually a good guide to the future. If light from the sun and sky is blue earlier in the day and yellow now, then it is likely to be more yellow later, as the sun's elevation decreases. But is the light reflected from a scene into the eye as predictable as the light incident upon the scene, especially when lighting changes are not just spectral but include changes in local shadows and mutual reflections? The aim of this work was to test the predictability of cone photoreceptor signals in the wild over the …


Role Of The Cost Of Plasticity In Determining The Features Of Fast Vision In Humans., Maria M. Del Viva Phd, Renato Budinich M. Sc, Laura Palmieri M. Sc, Vladimir S Georgiev Phd, Giovanni Punzi Phd May 2017

Role Of The Cost Of Plasticity In Determining The Features Of Fast Vision In Humans., Maria M. Del Viva Phd, Renato Budinich M. Sc, Laura Palmieri M. Sc, Vladimir S Georgiev Phd, Giovanni Punzi Phd

MODVIS Workshop

No abstract provided.


Failure Of Surface Color Cues Under Natural Changes In Lighting, David H. Foster, Iván Marín-Franch May 2016

Failure Of Surface Color Cues Under Natural Changes In Lighting, David H. Foster, Iván Marín-Franch

MODVIS Workshop

Color allows us to effortlessly discriminate and identify surfaces and objects by their reflected light. Although the reflected spectrum changes with the illumination spectrum, cone photoreceptor signals can be transformed to give useful cues for surface color. But what happens when both the spectrum and the geometry of the illumination change, as with lighting from the sun and sky? Is it possible, as a matter of principle, to obtain reliable cues by processing cone signals alone? This question was addressed here by estimating the information provided by cone signals from time-lapse hyperspectral radiance images of five outdoor scenes under natural …


Binocular 3d Motion Perception As Bayesian Inference, Martin Lages, Suzanne Heron May 2015

Binocular 3d Motion Perception As Bayesian Inference, Martin Lages, Suzanne Heron

MODVIS Workshop

The human visual system encodes monocular motion and binocular disparity input before it is integrated into a single 3D percept. Here we propose a geometric-statistical model of human 3D motion perception that solves the aperture problem in 3D by assuming that (i) velocity constraints arise from inverse projection of local 2D velocity constraints in a binocular viewing geometry, (ii) noise from monocular motion and binocular disparity processing is independent, and (iii) slower motions are more likely to occur than faster ones. In two experiments we found that instantiation of this Bayesian model can explain perceived 3D line motion direction under …


Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker May 2015

Object Recognition And Visual Search With A Physiologically Grounded Model Of Visual Attention, Frederik Beuth, Fred H. Hamker

MODVIS Workshop

Visual attention models can explain a rich set of physiological data (Reynolds & Heeger, 2009, Neuron), but can rarely link these findings to real-world tasks. Here, we would like to narrow this gap with a novel, physiologically grounded model of visual attention by demonstrating its objects recognition abilities in noisy scenes.

To base the model on physiological data, we used a recently developed microcircuit model of visual attention (Beuth & Hamker, in revision, Vision Res) which explains a large set of attention experiments, e.g. biased competition, modulation of contrast response functions, tuning curves, and surround suppression. Objects are represented by …


Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone May 2015

Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone

MODVIS Workshop

In this work we deal with the problem of designing and developing computational vision models – comparable to the early stages of the human development – using coarse low-level information.

More specifically, we consider a binary classification setting to characterize biological movements with respect to non-biological dynamic events. To this purpose, our model builds on top of the optical flow estimation, and abstract the representation to simulate the limited amount of visual information available at birth. We take inspiration from known biological motion regularities explained by the Two-Thirds Power Law, and design a motion representation that includes different low-level features, …