Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

High Speed X-Ray Phase Contrast Imaging Of Energetic Composites Under Dynamic Compression, Niranjan D. Parab, Zane A. Roberts, Michael H. Harr, Jesus O. Mares, Alex D. Casey, I. Emre Gunduz, Matthew Hudspeth, Benjamin Claus, Tao Sun, Kamel Fezzaa, Steven F. Son, Weinong W. Chen Sep 2016

High Speed X-Ray Phase Contrast Imaging Of Energetic Composites Under Dynamic Compression, Niranjan D. Parab, Zane A. Roberts, Michael H. Harr, Jesus O. Mares, Alex D. Casey, I. Emre Gunduz, Matthew Hudspeth, Benjamin Claus, Tao Sun, Kamel Fezzaa, Steven F. Son, Weinong W. Chen

Purdue Energetics Research Center Articles

Fracture of crystals and frictional heating are associated with the formation of “hot spots” (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression …


Reactive Flow Modeling Of Small Scale Detonation Failure Experiments For A Baseline Non-Ideal Explosive, David E. Kittell, Nick R. Cummock, Steven F. Son Jul 2016

Reactive Flow Modeling Of Small Scale Detonation Failure Experiments For A Baseline Non-Ideal Explosive, David E. Kittell, Nick R. Cummock, Steven F. Son

Purdue Energetics Research Center Articles

Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it …


The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads Dec 2015

The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads

Purdue Energetics Research Center Articles

The ability to detect explosive materials may be significantly enhanced with local increases in vapor pressure caused by an elevation of the materials'temperature. Recently, ultrasonic excitation has been shown to generate heat within plastic-bonded energetic materials. To investigate the impact of crystal morphology on this heating, samples of elastic binder are implanted with single ammonium perchlorate crystals of two distinct shape groups. Contact piezoelectric transducers are then used to excite the samples at ultrasonicfrequencies. The thermal responses of the crystals are recorded using infrared thermography, and the rate of heating is estimated. Surface temperature increases up to 15 °C …


Simulations Of Nanoscale Ni/Al Multilayer Foils With Intermediate Ni2al3 Growth, I. E. Gunduz, S. Onel, C. C. Doumanidis, C. Rebholz, Steven F. Son May 2015

Simulations Of Nanoscale Ni/Al Multilayer Foils With Intermediate Ni2al3 Growth, I. E. Gunduz, S. Onel, C. C. Doumanidis, C. Rebholz, Steven F. Son

Purdue Energetics Research Center Articles

Nanoscale multilayers of binary metallic systems, such as nickel/aluminum, exhibit self-propagating exothermic reactions due to the high formation enthalpy of the intermetallic compounds. Most of the previous modelingapproaches on the reactions of this system rely on the use of mass diffusionwith a phenomenological derived diffusion coefficient representing single-phase (NiAl) growth, coupled with heat transport. We show that the reaction kinetics, temperatures, and thermal front width can be reproduced more satisfactorily with the sequential growth of Ni2Al3 followed by NiAl, utilizing independently obtained interdiffusivities. The computational domain was meshed with a dynamically generated bi-modal grid consisting of fine and coarse zones …