Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Processing Of Plastic Film From Potato Starch: Effect Of Drying Methods, Kourtney Collier, Samantha Goins, Austin Chirgwin, Isabelle Stanfield Nov 2022

Processing Of Plastic Film From Potato Starch: Effect Of Drying Methods, Kourtney Collier, Samantha Goins, Austin Chirgwin, Isabelle Stanfield

The Journal of Purdue Undergraduate Research

Starch-based plastics are biodegradable, compostable compounds made of starch and plasticizers from natural sources. Their fabrication involves the starch-plasticizer reaction at 70–100°C followed by cooling and drying. Th e most common drying method is air drying (natural convection), which is effective but slow. Th e objective of this work is to study the effect of fast drying (forced convection) on the quality of the plastic film. Th is work compares the effects of drying conditions and drying rate on warpage, shrinkage rate, and presence of bubbles. Five drying methods are studied: (1) natural convection with uncovered petri dish, (2) natural …


Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei Aug 2018

Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential …


Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell Aug 2018

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ceramic and semiconductor research is limited in its ability to create holistic representations of data in concise, easily-accessible file formats or visual data representations. These materials are used in everyday electronics, and optimizing their electrical and physical properties is important for developing more advanced computational technologies. There is a desire to understand how changing the composition of the ceramic alters the shape and structure of the grown crystals. However, few accessible tools exist to generate a dataset with the proper organization to understand correlations between grain orientation and crystallographic orientation. This paper outlines an approach to analyzing the crystal structure …


Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan Aug 2017

Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomistic and molecular simulations have become an important research field due to the progress made in computer performance and the necessity of new and improved materials. Despite this, first principle simulations of large molecules are still not possible because the high computational time and resources required. Other methods, such as molecular dynamics, allow the simplification of calculations by defining energy terms to describe multiple atom interactions without compromising accuracy significantly. A group of these energy terms is called a force field, and each force field has its own descriptions and parameters. The objective of this project was to develop a …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang Oct 2016

Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


An Antireflective Tco Film For Czts Solar Cells, Feng Zhan Oct 2016

An Antireflective Tco Film For Czts Solar Cells, Feng Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A Parallel 3d Phase-Field Simulation Of Multi-Grain Growth Based On The Full Thread Tree, Ya-Jun Yin, Min Wang, Jian-Xin Zhou, Dun-Ming Liao, Xu Shen, Tao Chen Oct 2016

A Parallel 3d Phase-Field Simulation Of Multi-Grain Growth Based On The Full Thread Tree, Ya-Jun Yin, Min Wang, Jian-Xin Zhou, Dun-Ming Liao, Xu Shen, Tao Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao Oct 2016

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Development And Computer Simulation Of A New Combined Energy-Saving Technological Process Of Production Of High-Quality Wire With Sub-Ultrafine-Grained Structure, Abdrakhman Naizabekov, Sergey Lezhnev, Evgeniy Panin, Igor Mazur Oct 2016

Development And Computer Simulation Of A New Combined Energy-Saving Technological Process Of Production Of High-Quality Wire With Sub-Ultrafine-Grained Structure, Abdrakhman Naizabekov, Sergey Lezhnev, Evgeniy Panin, Igor Mazur

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu Aug 2016

Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu

Open Access Theses

Current lithium ion batteries are comprised of organic liquid electrolytes - a mixture of lithium salts and binary solvents such as ethylene carbonate (EC) and dimethyl carbonate (DMC). The main drawbacks of this liquid mixture related to safety are flammability of the organic solvents and chemical instability with the electrode materials. To date, various ceramic and polymer materials have been considered which overcome safety issues. However, a common problem of these solid state materials is that they are not able to provide high ionic conductivity at ambient temperatures. Garnet-type cubic Li7La 3Zr2O12 ceramic material has attracted much interest because of …


Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp Aug 2016

Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp

Open Access Theses

Self-assembled monolayers (SAM’s) offer a straightforward approach to tailoring the interfacial properties of metals, metal oxides and semiconductors. Noncovalent functionalization of single-layer graphene offers the possibility to finely tune surface chemistry for future applications in electronics. Polymerization of photochemically reactive molecules in a lying-down phase has been used to increase the strength of intermolecular interactions between long alkanes and HOPG substrates. Long-chain fatty acid derivatives with internal diyne groups yield a conjugated ene-yne polymer upon UV irradiation. Diyne lipids with phosphocholine (diyne PC) and phosphoethanolamine (diyne PE) groups offer a charged form of the head group that is robust towards …


Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood May 2016

Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood

Open Access Dissertations

With the aim of developing new technologies for the detection and defeat of energetic materials, this collection of work was focused on using simulations to characterize materials at extremes of temperature, pressure and radiation. Each branch of the work here is collected by which material response is potentially used as the detectable signal.

Where the chemical response is of interest, this work will explore the possibility of non-statistical chemical reactions in condensed-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different means of energy input: electric fields …


Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein Aug 2015

Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Plasma facing components (PFCs) in fusion devices must be able to withstand high temperatures and erosion due to incident energetic ion radiations. Tungsten has become the material of choice for PFCs due to its high strength, thermal conductivity, and low erosion rate. However, its surface deteriorates significantly under helium ion irradiation in fusion-like conditions and forms nanoscopic fiber-like structures, or fuzz. Fuzz is brittle in nature and has relatively lower thermal conductivity than that of the bulk material. Small amounts of fuzz may lead to excessive contamination of the plasma, preventing the fusion reaction from taking place. Despite recent efforts, …


Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay Aug 2015

Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than half of the annual energy consumption in the United States is lost as waste heat. Polymer-based thermoelectric devices have the potential to utilize this waste heat both sustainably and cost-effectively. Although conjugated polymers currently dominate research in organic thermoelectrics, the potential of using polymers with radical pendant groups have yet to be realized. These polymers have been found to be as conductive as pristine (i.e., not doped) poly(3-hexylthiophene) (P3HT), a commonly-used charge-transporting conjugated polymer. This could yield promising avenues for thermoelectric material design as radical polymers are more synthetically tunable and are hypothesized to have a high Seebeck …


Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada Apr 2015

Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada

Open Access Dissertations

Various theories predict the possible existence of symmetry violating forces with mesoscopic range interactions from mm-m [1]. These forces can arise from the coupling of a spin 0 boson to spin 1/2 fermions through scalar (gs) and pseudoscalar (gp) couplings. We discuss two experiments that can investigate these interactions using nucleon rich, impressively low magnetic susceptibility (5-100 times lower than pure water) test masses and electron-spin rich, polarized test masses (spin density: 10^20 h/cm3 ). The first experiment looks for a P-odd, T-odd interaction potential proportional to (S.r) where S is the spin of one particle and r is the …


Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu Apr 2015

Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu

Open Access Dissertations

Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some theoretical/experimental studies about the thermal, electronic and thermoelectric transport properties in graphene-based systems. We employ the molecular dynamic simulations to study the thermal transport in graphene nanoribbons (GNRs) exhibiting various properties, including chirality dependent thermal conductivity, thermal rectification in asymmetric GNRs, defects and isotopic engineering of the thermal conductivity and negative differential thermal conductance (NDTC) at large temperature biases. …


Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth …


Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres Oct 2014

Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres

Open Access Dissertations

This report focuses on the optical and electronic properties of graphene and topological insulators and how these Dirac fermion systems interact with energetic irradiation. We first present data exploring the effects of electron-beam and oxygen plasma induced disorder on the electronic properties and Raman spectra of graphene. These initial investigations were important for relating Raman peak intensities and weak localization features to each other and to an average disorder length in graphene, LD. ^ We then integrate gate-effect measurements into the Raman spectroscopy study to fully explore the relationships between carrier density, disorder and Raman spectrum signatures. We …


Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel Oct 2014

Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel

Open Access Theses

This work establishes the ability to conduct digital image correlation (DIC) investigations at varying length scales. DIC allows for a computational method of strain field measurements using multiple images to track random speckle patterns on material surfaces. The use of a powder silicon oxide speckle allows for high optical magnification correlation using conventional load frames. Self-assembling gold nanoparticles provide sub-micron resolution speckle patterns to study microstructure influences on deformation using scanning electron microscopy. The complex microstructure in aerospace grade aluminum and nickel-based superalloys, give rise to varied deformation fields, which can be studied using electron backscatter diffraction. Specimen preparation techniques, …


High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min Oct 2014

High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min

Open Access Theses

The mobility of Two-dimensional Electron Gas in AlGaAs/GaAs heterostructures that are grown in the Molecular Beam Epitaxy (MBE) can be increased by purification of the gallium used to grow the films. To attain 200 million cm2/Vs mobility, the impurity concentration of gallium should be reduced to below 1 ppb. The commercial 7N (99.99999%) gallium with 100 ppb total impurity is currently used in the MBE at Purdue University and is being purified by zone refining. To evaluate the commercial 7N gallium and establish the methodology for the impurity measurement after zone refining, germanium, iron, and zinc in 6N and 7N …


Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker Aug 2014

Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Injuries involving damaged tissues are currently repaired through an invasive technique involving the use of screws, plates and sutures as support, which can damage these tissues. The biomedical field currently lacks an adhesive that can replace harmful implants. A surgical adhesive can provide a quick and easy alternative, which will minimize the risk of damaging healthy tissue in surgery. Inspiration for such materials can be found by looking at marine mussels as they are able to stick to nearly any surface, even in wet environments. Marine mussels affix themselves to different surfaces using adhesive plaques consisting of various proteins. Polymer …


Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan Aug 2014

Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Density Functional Theory (DFT) simulations allow for sophisticated modeling of chemical interactions, but the extreme computational cost makes it inviable for large scale applications. Molecular dynamics models, specifically ReaxFF, can model much larger simulations with greater speed, but with lesser accuracy. The accuracy of ReaxFF can be improved by comparing predictions of both methods and tuning ReaxFF’s parameters. Molecular capabilities of ReaxFF were gauged by simulating copper complexes in water over a 200 ps range, and comparing energy predictions against ReaxFF. To gauge solid state capabilities, volumetric strain was applied to simulated copper bulk and the strain response functions used …


Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash Jul 2014

Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash

Open Access Theses

Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, …


Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison Jul 2014

Nickel Aluminum Shape Memory Alloys Via Molecular Dynamics, Keith Ryan Morrison

Open Access Theses

Shape memory materials are an important class of active materials with a wide range of applications in the aerospace, biomedical, and automobile industries. These materials exhibit the two unique properties of shape memory and superelasticity. Shape memory is the ability to recover its original shape by applying heat after undergoing large deformations. Superelasticity is the ability to undergo large, reversible deformations (up to 10%) that revert back when the load is removed. These special properties originate from a reversible, diffusionless solid-solid phase transformation that occurs between a high temperature austenite phase and a low temperature martensite phase. The development of …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu Apr 2014

Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu

Open Access Theses

The chemical and physical structure-property relationships of model superabsorbent polymer (SAP) hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+ , Ca2+ , and Al3+ ). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt.%) and covalent crosslinking densities of 1, 1.5, and 2 wt.%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels …