Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Electrochemical Properties Of Graphene/Porous Nano-Silicon Anode, Chun-Li Li, Guang Yang, Ping Zhang, Zhi-Yu Jiang Dec 2015

Electrochemical Properties Of Graphene/Porous Nano-Silicon Anode, Chun-Li Li, Guang Yang, Ping Zhang, Zhi-Yu Jiang

Journal of Electrochemistry

Porous nano-silicon (Si) was prepared by acid etching Al-Si alloy powder method, and used as an active material for fabricating a grapene/porous nano-Si electrode. The results of SEM and TEM measurements indicated that porous nano-Si powder was uniformly mixed with graphene by emulsification dispersion-ultrasonication method. As an anode for lithium ion battery, the graphene/porous nano-Si electrode presented relatively high performance in 1 mol•L-1 LiPF6/EC:DMC = 1:1(by volume) + 1.5% (by mass) VC solution. At the charge and discharge current densities of 0.5A•g-1, the first discharge capacity was 1768.6 mAh•g-1 with coulombic efficiency of 68.3%. The discharge …


Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia Jun 2015

Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia

Journal of Electrochemistry

In present work, lithium-rich layered transition metal oxide (LLO) was synthesized by a co-precipitation method in combination with a solid-state reaction. The graphene wrapped Li-rich layered oxide composite (LLO/Gra) was obtained by sintering the LLO/GO composite at 300 oC for 30 min in an air. The morphologies and the electrochemical performances were characterized by means of SEM, TEM, XRD, XPS, EIS and charge/discharge tests. The results indicated that the LLOe particles were uniformly wrapped with graphene. The resulting material exhibited better rate capability than that of pristine LLO since the wrapped graphene demonstrated the enhanced electronic conductivity. Accordingly, the …