Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 167

Full-Text Articles in Physical Sciences and Mathematics

Dataset: Marsh Migration Methodology Development For Wetland Restoration Targeting, Molly Mitchell, Karinna Nunez, Christine Tombleson, Julie Herman Sep 2023

Dataset: Marsh Migration Methodology Development For Wetland Restoration Targeting, Molly Mitchell, Karinna Nunez, Christine Tombleson, Julie Herman

Data

Coastal marsh loss is a significant issue globally, due in part to rising sea levels and high levels of coastal human activity. Marshes have natural mechanisms to allow them to adapt to rising sea levels, however, migration across the landscape is one of those mechanisms and is frequently in conflict with human use of the shoreline. Ensuring the persistence of marshes into the future requires an understanding of where marshes are likely to migrate under sea level rise and targeting those areas for conservation and preservation activities. The goal of this project was to 1) compile existing datasets and information …


Gis Data: Prince George’S County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Jun 2023

Gis Data: Prince George’S County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Harford County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Jun 2023

Gis Data: Harford County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Cecil County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Jun 2023

Gis Data: Cecil County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Caroline County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Jun 2023

Gis Data: Caroline County, Maryland – Shoreline Inventory Data 2023, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Elizabeth River Basin Environmental Justice Indicators, Molly Mitchell, Andrew M. Scheld, Sarah Stafford, Tamia Rudnicky, Joseph Snitzer May 2023

Elizabeth River Basin Environmental Justice Indicators, Molly Mitchell, Andrew M. Scheld, Sarah Stafford, Tamia Rudnicky, Joseph Snitzer

Data

This data is a portion of the data included in the Elizabeth River Environmental Justice Tool (https://cmap22.vims.edu/EREJTool/) The Elizabeth River Environmental Justice map viewer contains a variety of layers that will help planners target vulnerable locations and populations within the Elizabeth River Watershed. This data was developed specifically to support the Elizabeth River Project’s decision making in this region.


Road Accessibility From County Seat Under Flooding: Middle Peninsula, Northern Neck, Southside, Molly Mitchell, Jessica Hendricks, Daniel Schatt, Marcia Berman Feb 2023

Road Accessibility From County Seat Under Flooding: Middle Peninsula, Northern Neck, Southside, Molly Mitchell, Jessica Hendricks, Daniel Schatt, Marcia Berman

Data

The impacts of recurrent flooding on roadways present challenging social and economic considerations for all coastal jurisdictions. Maintenance, public and private accessibility, evacuation routes, and emergency services are just a few of the common themes local governments are beginning to address for low-lying roadways currently known to flood. The project implements a protocol developed by CCRM to analyze the level at which road flooding may impact communities and their ability to reach key locations at periodic intervals; through the year 2100 in coastal Virginia. Using a network analysis, road accessibility is evaluated at different levels of flooding (at 0.1 meter …


Gis Data: Charles County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Nov 2022

Gis Data: Charles County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Worcester County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Nov 2022

Gis Data: Worcester County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions: 1) the …


Gis Data: St Mary’S County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Nov 2022

Gis Data: St Mary’S County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Somerset County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Nov 2022

Gis Data: Somerset County, Maryland – Shoreline Inventory Data 2021, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions: 1) the …


Gis Data: Kent County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Sep 2022

Gis Data: Kent County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Baltimore County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Sep 2022

Gis Data: Baltimore County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Queen Anne’S County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Sep 2022

Gis Data: Queen Anne’S County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Baltimore City, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Sep 2022

Gis Data: Baltimore City, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Gis Data: Wicomico County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill Sep 2022

Gis Data: Wicomico County, Maryland – Shoreline Inventory Data 2022, Karinna Nunez, Tamia Rudnicky, Sharon Killeen, Jessica Hendricks, Catherine R. Duning, Evan Hill

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shore zone into three regions:

1) the …


Marsh Vulnerability Index And Index Applied To Coastal Shorelines, Molly Mitchell, Donna Marie Bilkovic, Julie Herman, Jessica Hendricks, Evan Hill Jan 2022

Marsh Vulnerability Index And Index Applied To Coastal Shorelines, Molly Mitchell, Donna Marie Bilkovic, Julie Herman, Jessica Hendricks, Evan Hill

Data

The Marsh Vulnerability Index (MVI) is a spatially-resolved assessment of Virginia tidal marsh vulnerabilities from important climate-change drivers – erosion vulnerability, inundation from sea level rise, and salinity intrusion from sea level rise – that can support management decisions. Effects were evaluated for two time-steps (near and longer-term planning horizons): 2050 and 2100.

The Marsh Vulnerability Index Applied to Coastal Shorelines layer extends the MVI evaluation for use in evaluating living shoreline (i.e., created or enhanced shoreline marshes) vulnerability and applies it to tidal shorelines in coastal Virginia. Outputs from this analysis were intended to evaluate the vulnerability of areas …


Storm Surge Simulation From The 2009 Nor’Easter On The Virginia Shoreline, Karinna Nunez, Yinglong J. Zhang, Evan Hill, Catherine Riscassi Duning Jan 2022

Storm Surge Simulation From The 2009 Nor’Easter On The Virginia Shoreline, Karinna Nunez, Yinglong J. Zhang, Evan Hill, Catherine Riscassi Duning

Data

The November 2009 nor’easter formed from the remnants of Hurricane Ida and generated strong winds, heavy rain, and storm surge across the east coast of the United States. The height of the storm surge generated by the nor’easter was modelled throughout Virginia using SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model). SCHISM outputs were translated to GIS and processed to be overlaid upon the LUBC (land use and bank cover) shoreline of coastal Virginia.


Storm Surge Simulation From Hurricane Isabel (2003) On The Virginia Shoreline, Karinna Nunez, Yinglong J. Zhang, Evan Hill, Catherine Riscassi Duning Jan 2022

Storm Surge Simulation From Hurricane Isabel (2003) On The Virginia Shoreline, Karinna Nunez, Yinglong J. Zhang, Evan Hill, Catherine Riscassi Duning

Data

Hurricane Isabel made landfall in the Outer Banks of North Carolina on September 16, 2003 as a category 2 hurricane. The storm continued northwest after making landfall and significantly impacted Virginia with strong winds, storm surge, and heavy rainfall. The height of the storm surge generated by Hurricane Isabel was modelled throughout Virginia using SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model). SCHISM outputs were translated to GIS and processed to be overlaid upon the LUBC (land use and bank cover) shoreline of coastal Virginia.


Coastal Virginia Flooding Duration Maps Current And Projected For 2020, 2050 And 2100, Molly Mitchell, Daniel Schatt, Jessica Hendricks Jan 2022

Coastal Virginia Flooding Duration Maps Current And Projected For 2020, 2050 And 2100, Molly Mitchell, Daniel Schatt, Jessica Hendricks

Data

Geospatial layers displaying annual flooding duration in the coastal zone of Virginia. These were generated from publicly available historical hourly tidal data from the NOAA Tides and Currents website from various tide gauges in the Chesapeake Bay region for the last 20 years. Particular tide gauges were linked to specific localities depending on location. The data was processed to determine average annual flooding duration at various flooding levels. Flood levels corresponding to specified average annual duration levels were then determined and used with lidar-derived digital elevation models to extract flood areas corresponding to the specified ranges of flood duration. Specifically, …


Coastal Natural And Nature-Based Features (Nnbfs) Ranked: Co-Benefits For Coastal Buildings And Target Areas For The Creation Of New Or Restoration Of Nnbfs In Coastal Virginia, Pamela Mason, Jessica Hendricks, Julie Herman May 2021

Coastal Natural And Nature-Based Features (Nnbfs) Ranked: Co-Benefits For Coastal Buildings And Target Areas For The Creation Of New Or Restoration Of Nnbfs In Coastal Virginia, Pamela Mason, Jessica Hendricks, Julie Herman

Data

Community resilience to storm-driven coastal flooding is improved with the presence of natural and nature-based features (NNBFs) such as wetlands, wooded areas, living shorelines, and beaches. These natural and created features can provide multiple benefits for a local community, including mitigating the impacts of storm surge and sea-level rise and allowing communities to take advantage of programmatic incentive programs like FEMA’s Community Rating System and nutrient reduction crediting.

As part of a NOAA-funded project NA17NOS4730142, an exportable geospatial protocol and NNBF ranking methodology was developed with the goal of incentivizing the protection and creation of NNBFs across Chesapeake Bay localities …


Areas Suitable For Living Shorelines: Ranked For Co-Benefits Provided, Pamela Mason, Tamia Rudnicky, Jessica Hendricks, Marcia Berman May 2021

Areas Suitable For Living Shorelines: Ranked For Co-Benefits Provided, Pamela Mason, Tamia Rudnicky, Jessica Hendricks, Marcia Berman

Data

The Center for Coastal Resources Management (CCRM) at the Virginia Institute of Marine Science (VIMS) has been developing tools to guide local governments in shoreline management. Using a number of criteria, the Shoreline Management Model (SMM) determines appropriate shoreline best management practices. This layer contains only those areas determined to be suitable for non-structural plant marsh or plant marsh with sill recommendations. These areas are prioritized using a scoring method that considers nutrient removal potential, benefits provided to coastal buildings, the potential for the project to provide habitat continuity and enhancement, and the potential the project to add resilience for …


Road Accessibility From County Seat Under Flooding: Hampton, Newport News, James City, Poquoson, Williamsburg, York, Accomack, Northampton, Alexandria, Fairfax, Gloucester, Mathews, Middlesex, Molly Mitchell, Jessica Hendricks, Daniel Schatt, Marcia Berman May 2021

Road Accessibility From County Seat Under Flooding: Hampton, Newport News, James City, Poquoson, Williamsburg, York, Accomack, Northampton, Alexandria, Fairfax, Gloucester, Mathews, Middlesex, Molly Mitchell, Jessica Hendricks, Daniel Schatt, Marcia Berman

Data

The impacts of recurrent flooding on roadways present challenging social and economic considerations for all coastal jurisdictions. Maintenance, public and private accessibility, evacuation routes, and emergency services are just a few of the common themes local governments are beginning to address for low-lying roadways currently known to flood. The project implements a protocol developed by CCRM to analyze the level at which road flooding may impact communities and their ability to reach key locations at periodic intervals; through the year 2100 in coastal Virginia. Using a network analysis, road accessibility is evaluated at different levels of flooding (at 0.1 meter …


Physical Vulnerability Index, Karinna Nunez, Molly Mitchell, Alexander Renaud May 2021

Physical Vulnerability Index, Karinna Nunez, Molly Mitchell, Alexander Renaud

Data

The Center for Coastal Resources Management at the Virginia Institute of Marine Science has developed a Physical Vulnerability Index (PVI) for the Chesapeake Bay region. PVI provides a broad perspective on the vulnerability of the Tidewater region, creating a composite measure of general flood impact rather than the threat of any one particular storm track. While there have been a number of efforts to categorize physical risk, the analysis behind this physical vulnerability index allows for application at a variety of scales, such as the county or US Census tract level. Calculating physical risk for geopolitically defined boundaries generates values …


Gis Data: Anne Arundel County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi Jan 2021

Gis Data: Anne Arundel County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shorezone into three regions:

1) the immediate …


Coastal Virginia Social Vulnerability Index At The Block Group Level, Sarah Stafford, Schyler Vander Schaaf Jan 2021

Coastal Virginia Social Vulnerability Index At The Block Group Level, Sarah Stafford, Schyler Vander Schaaf

Data

Following other social vulnerability indexes, including the SoVI® developed by the Hazards & Vulnerability Research Institute at the University of South Carolina, this vulnerability index is based on a principal component analysis (PCA). PCA is a statistical technique that takes as its input a matrix of interrelated socioeconomic variables – in this case those considered to measure various dimensions of social vulnerability – and creates a new set of orthogonal principal components that extract the important variation the underlying input data while reducing the noise and redundancy in the data. After conducting the PCA, the researcher combines the newly created …


Gis Data: Calvert County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi Jan 2021

Gis Data: Calvert County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shorezone into three regions:

1) the immediate …


Gis Data: Talbot County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi Jan 2021

Gis Data: Talbot County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shorezone into three regions:

1) the immediate …


Gis Data: Dorchester County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi Jan 2021

Gis Data: Dorchester County, Maryland - Shoreline Inventory Data 2020, Karinna Nunez, Marcia Berman, Sharon Killeen, Jessica Hendricks, Tamia Rudnicky, Catherine Riscassi

Data

The shoreline inventory files have been generated to support the application of the Maryland Shoreline Stabilization Model (SSM), developed by the Center for Coastal Resources Management (CCRM), Virginia Institute of Marine Science (VIMS), to enhance and streamline regulatory decision making in Maryland. This shoreline inventory includes the features needed as inputs to run the SSM.

The data developed for the Shoreline Inventory is based on a three-tiered shoreline assessment approach. This assessment characterizes conditions by using observations made remotely at the desktop using high resolution imagery. The three-tiered shoreline assessment approach divides the shorezone into three regions:

1) the immediate …


Gis Data: King & Queen County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill Jan 2019

Gis Data: King & Queen County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill

Data

The Virginia Institute of Marine Science published the first Tidal marsh Inventories using data collected in the early 1970's. Using high resolution color infra-red imagery from 2009 a new Tidal Marsh Inventory has been developed for the York River Watershed in 2010. Marsh boundaries were generated using heads-up digitizing techniques at a scale of 1:1,000. Each marsh polygon was classified by morphologic type: fringe, extensive, embayed, or marsh island. Marshes were ground-truthed in the field where a community type index was assigned to each marsh based on plant community make-up. Each marsh was also coded with a marsh number which …