Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre Jan 2022

What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This Maple worksheet demonstrates the salient new features and functionalities of the 2022 release of the DifferentialGeometry software package.


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …


How To Make Tetrads, Charles G. Torre Jan 2018

How To Make Tetrads, Charles G. Torre

How to... in 10 minutes or less

This is a worksheet which demonstrates tools for creating orthonormal and null tetrads for a given spacetime.


Symmetric Criticality In General Relativity, Charles G. Torre Jan 2018

Symmetric Criticality In General Relativity, Charles G. Torre

Research Vignettes

In this worksheet I explore the local Lagrangian version of the Principle of Symmetric Criticality (PSC) due to Anderson, Fels, and Torre], which asserts the commutativity of the processes (i) of symmetry reduction (for finding group-invariant fields) and (ii) forming Euler-Lagrange equations. There are two obstructions to PSC, which I will call the Lie algebra obstruction and the isotropy obstruction. In this worksheet I will illustrate these obstructions in the General Theory of Relativity.


Examples Of The Birkhoff Theorem And Its Generalizations, Charles G. Torre Jan 2018

Examples Of The Birkhoff Theorem And Its Generalizations, Charles G. Torre

Tutorials on... in 1 hour or less

In this worksheet I demonstrate three versions of Birkhoff's theorem, which is a characterization of spherically symmetric solutions of the Einstein equations. The three versions considered here correspond to taking the "Einstein equations" to be: (1) the vacuum Einstein equations; (2) the Einstein equations with a cosmological constant (3) the Einstein-Maxwell equations. I will restrict my attention to 4-dimensional spacetimes.


Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre Dec 2017

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This is a Maple worksheet providing an introduction to the USU Library of Solutions to the Einstein Field Equations. The library is part of the DifferentialGeometry software project and is a collection of symbolic data and metadata describing solutions to the Einstein equations.


Perihelion Precession In The General Theory Of Relativity, Charles G. Torre Jan 2017

Perihelion Precession In The General Theory Of Relativity, Charles G. Torre

Tutorials on... in 1 hour or less

This is a relatively quick and informal sketch of a demonstration that general relativistic corrections to the bound Kepler orbits introduce a perihelion precession. Any decent textbook on the general theory of relativity will derive this result. My analysis aligns with that found in the good old text "Introduction to General Relativity", by Adler, Bazin and Schiffer.


The Kretschmann Scalar, Charles G. Torre Jan 2016

The Kretschmann Scalar, Charles G. Torre

How to... in 10 minutes or less

On a pseudo-Riemannian manifold with metric g, the "Kretschmann scalar" is a quadratic scalar invariant of the Riemann R tensor of g, defined by contracting all indices with g. In this worksheet we show how to calculate the Kretschmann scalar from a metric.


Differentialgeometry In Brno, Ian M. Anderson Dec 2015

Differentialgeometry In Brno, Ian M. Anderson

Presentations

This page will provide files supporting Ian Anderson's presentations in Brno, December 2015. The files can be found and downloaded from "Additional Files", below.

The files include:

(1) DifferentialGeometryUSU.mla: This is the Maple Library Archive file which provides all the DifferentialGeometry functionality. Here are Installation Instructions.

(2) DifferentialGeometry.help : this is the latest version of the DifferentialGeometry documentation. Copy this file to the same directory used for DifferentialGeometryUSU.mla (from step (1)).


Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre Dec 2014

Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre

Research Vignettes

In this worksheet we describe and illustrate a relatively simple set of new Rainich-type conditions on an n-dimensional spacetime which are necessary and sufficient for it to define a perfect fluid solution of the Einstein field equations. Procedures are provided which implement these Rainich-type conditions and which reconstruct the perfect fluid from the metric. These results provide an example of the idea of geometrization of matter fields in general relativity, which is a purely geometrical characterization of matter fields via the Einstein field equations.


A Comparison Of X-Ray And Optical Emission In Cassiopeia A, Daniel J. Patnaude, Robert A. Fesen Mar 2014

A Comparison Of X-Ray And Optical Emission In Cassiopeia A, Daniel J. Patnaude, Robert A. Fesen

Dartmouth Scholarship

Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant’s X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which …


Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre Oct 2013

Rainich-Type Conditions For Null Electrovacuum Spacetimes Ii, Charles G. Torre

Research Vignettes

In this second of two worksheets I continue describing local Rainich-type conditions which are necessary and sufficient for the metric to define a null electrovacuum. In other words, these conditions, which I will call the null electrovacuum conditions, guarantee the existence of a null electromagnetic field such that the metric and electromagnetic field satisfy the Einstein-Maxwell equations. When it exists, the electromagnetic field is easily constructed from the metric. In this worksheet I consider the null electrovacuum conditions which apply when a certain null geodesic congruence determined by the metric is twisting. I shall illustrate the these conditions using a …


Gr 20 Workshop, Warsaw, July 2013, Ian M. Anderson, Charles G. Torre Aug 2013

Gr 20 Workshop, Warsaw, July 2013, Ian M. Anderson, Charles G. Torre

Presentations

These are the Maple worksheets used at the Differential Geometry in Maple Workshop, which was held at the 20th International Conference on General Relativity and Gravitation, in Warsaw, July 2013.

There are 6 worksheets which can be downloaded from the list of files below.


Rainich-Type Conditions For Null Electrovacuum Spacetimes I, Charles G. Torre Mar 2013

Rainich-Type Conditions For Null Electrovacuum Spacetimes I, Charles G. Torre

Research Vignettes

In this worksheet I describe local Rainich-type conditions on a spacetime geometry which are necessary and sufficient for the existence of a solution of the Einstein-Maxwell equations with a null electromagnetic field. When it exists, the electromagnetic field is easily constructed.


How To Find Killing Vectors, Charles G. Torre Mar 2013

How To Find Killing Vectors, Charles G. Torre

How to... in 10 minutes or less

We show how to compute the Lie algebra of Killing vector fields of a metric in Maple using the commands KillingVectors and LieAlgebraData. A Maple worksheet and a PDF version can be found below.