Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms

2020

Scheduling

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Reinforcement Learning For Zone Based Multiagent Pathfinding Under Uncertainty, Jiajing Ling, Tarun Gupta, Akshat Kumar Oct 2020

Reinforcement Learning For Zone Based Multiagent Pathfinding Under Uncertainty, Jiajing Ling, Tarun Gupta, Akshat Kumar

Research Collection School Of Computing and Information Systems

We address the problem of multiple agents finding their paths from respective sources to destination nodes in a graph (also called MAPF). Most existing approaches assume that all agents move at fixed speed, and that a single node accommodates only a single agent. Motivated by the emerging applications of autonomous vehicles such as drone traffic management, we present zone-based path finding (or ZBPF) where agents move among zones, and agents' movements require uncertain travel time. Furthermore, each zone can accommodate multiple agents (as per its capacity). We also develop a simulator for ZBPF which provides a clean interface from the …


A Matheuristic Algorithm For Solving The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu May 2020

A Matheuristic Algorithm For Solving The Vehicle Routing Problem With Cross-Docking, Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, Vincent F. Yu

Research Collection School Of Computing and Information Systems

This paper studies the integration of the vehicle routing problem with cross-docking, namely VRPCD. The aim is to find a set of routes to deliver single products from a set of suppliers to a set of customers through a cross-dock facility, such that the operational and transportation costs are minimized, without violating the vehicle capacity and time horizon constraints. A two-phase matheuristic approach that uses the routes of the local optima of an adaptive large neighborhood search (ALNS) as columns in a set-partitioning formulation of the VRPCD is designed. This matheuristic outperforms the state-of-the-art algorithms in solving a subset of …