Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Physical Sciences and Mathematics

Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo Dec 2023

Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely used in various domains, such as computer vision and software engineering. Although many DNNs have been deployed to assist various tasks in the real world, similar to traditional software, they also suffer from defects that may lead to severe outcomes. DNN testing is one of the most widely used methods to ensure the quality of DNNs. Such method needs rich test inputs with oracle information (expected output) to reveal the incorrect behaviors of a DNN model. However, manually labeling all the collected test inputs is a labor-intensive task, which delays the quality assurance …


Offline Rl With Discrete Proxy Representations For Generalizability In Pomdps, Pengjie Gu, Xinyu Cai, Dong Xing, Xinrun Wang, Mengchen Zhao, Bo An Dec 2023

Offline Rl With Discrete Proxy Representations For Generalizability In Pomdps, Pengjie Gu, Xinyu Cai, Dong Xing, Xinrun Wang, Mengchen Zhao, Bo An

Research Collection School Of Computing and Information Systems

Offline Reinforcement Learning (RL) has demonstrated promising results in various applications by learning policies from previously collected datasets, reducing the need for online exploration and interactions. However, real-world scenarios usually involve partial observability, which brings crucial challenges of the deployment of offline RL methods: i) the policy trained on data with full observability is not robust against the masked observations during execution, and ii) the information of which parts of observations are masked is usually unknown during training. In order to address these challenges, we present Offline RL with DiscrEte pRoxy representations (ORDER), a probabilistic framework which leverages novel state …


C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia Dec 2023

C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia

Research Collection School Of Computing and Information Systems

Reinventing the wheel is a detrimental programming practice in software development that frequently results in the introduction of duplicated components. This practice not only leads to increased maintenance and labor costs but also poses a higher risk of propagating bugs throughout the system. Despite numerous issues introduced by duplicated components in software, the identification of component-level clones remains a significant challenge that existing studies struggle to effectively tackle. Specifically, existing methods face two primary limitations that are challenging to overcome: 1) Measuring the similarity between different components presents a challenge due to the significant size differences among them; 2) Identifying …


Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin Dec 2023

Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

Learning-based approaches that learn code representations for software vulnerability detection have been proven to produce inspiring results. However, they still fail to capture complete and precise vulnerability semantics for code representations. To address the limitations, in this work, we propose a learning-based approach namely SnapVuln, which first utilizes multiple vulnerability-specific inter-procedural slicing algorithms to capture vulnerability semantics of various types and then employs a Gated Graph Neural Network (GGNN) with an attention mechanism to learn vulnerability semantics. We compare SnapVuln with state-of-the-art learning-based approaches on two public datasets, and confirm that SnapVuln outperforms them. We further perform an ablation study …


Controlling Type Confounding In Ad Hoc Teamwork With Instance-Wise Teammate Feedback Rectification, Dong Xing, Pengjie Gu, Qian Zheng, Xinrun Wang, Shanqi Liu, Longtao Zheng, Bo An, Gang Pan Dec 2023

Controlling Type Confounding In Ad Hoc Teamwork With Instance-Wise Teammate Feedback Rectification, Dong Xing, Pengjie Gu, Qian Zheng, Xinrun Wang, Shanqi Liu, Longtao Zheng, Bo An, Gang Pan

Research Collection School Of Computing and Information Systems

Ad hoc teamwork requires an agent to cooperate with unknown teammates without prior coordination. Many works propose to abstract teammate instances into high-level representation of types and then pre-train the best response for each type. However, most of them do not consider the distribution of teammate instances within a type. This could expose the agent to the hidden risk of type confounding. In the worst case, the best response for an abstract teammate type could be the worst response for all specific instances of that type. This work addresses the issue from the lens of causal inference. We first theoretically …


Deep Isolation Forest For Anomaly Detection, Hongzuo Xu, Guansong Pang, Yijie Wang, Yongjun Wang Dec 2023

Deep Isolation Forest For Anomaly Detection, Hongzuo Xu, Guansong Pang, Yijie Wang, Yongjun Wang

Research Collection School Of Computing and Information Systems

Isolation forest (iForest) has been emerging as arguably the most popular anomaly detector in recent years due to its general effectiveness across different benchmarks and strong scalability. Nevertheless, its linear axis-parallel isolation method often leads to (i) failure in detecting hard anomalies that are difficult to isolate in high-dimensional/non-linear-separable data space, and (ii) notorious algorithmic bias that assigns unexpectedly lower anomaly scores to artefact regions. These issues contribute to high false negative errors. Several iForest extensions are introduced, but they essentially still employ shallow, linear data partition, restricting their power in isolating true anomalies. Therefore, this paper proposes deep isolation …


Neural Airport Ground Handling, Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang Dec 2023

Neural Airport Ground Handling, Yaoxin Wu, Jianan Zhou, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance to the efficiency of airport management and the economics of aviation. Such a problem involves the interplay among the operations that leads to NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed with massive domain knowledge but still fail to yield high-quality solutions efficiently. In this paper, we aim to enhance the solution quality and computation efficiency for solving AGH. Particularly, we first model AGH as a multiple-fleet vehicle routing problem (VRP) with miscellaneous constraints including precedence, time windows, …


Joint Location And Cost Planning In Maximum Capture Facility Location Under Random Utilities, Ngan H. Duong, Tien Thanh Dam, Thuy Anh Ta, Tien Mai Nov 2023

Joint Location And Cost Planning In Maximum Capture Facility Location Under Random Utilities, Ngan H. Duong, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

We study a joint facility location and cost planning problem in a competitive market under random utility maximization (RUM) models. The objective is to locate new facilities and make decisions on the costs (or budgets) to spend on the new facilities, aiming to maximize an expected captured customer demand, assuming that customers choose a facility among all available facilities according to a RUM model. We examine two RUM frameworks in the discrete choice literature, namely, the additive and multiplicative RUM. While the former has been widely used in facility location problems, we are the first to explore the latter in …


Robust Maximum Capture Facility Location Under Random Utility Maximization Models, Tien Thanh Dam, Thuy Anh Ta, Tien Mai Nov 2023

Robust Maximum Capture Facility Location Under Random Utility Maximization Models, Tien Thanh Dam, Thuy Anh Ta, Tien Mai

Research Collection School Of Computing and Information Systems

We study a robust version of the maximum capture facility location problem in a competitive market, assuming that each customer chooses among all available facilities according to a random utility maximization (RUM) model. We employ the generalized extreme value (GEV) family of models and assume that the parameters of the RUM model are not given exactly but lie in convex uncertainty sets. The problem is to locate new facilities to maximize the worst-case captured user demand. We show that, interestingly, our robust model preserves the monotonicity and submodularity from its deterministic counterpart, implying that a simple greedy heuristic can guarantee …


An Idealist’S Approach For Smart Contract Correctness, Duy Tai Nguyen, Hong Long Pham, Jun Sun, Quang Loc Le Nov 2023

An Idealist’S Approach For Smart Contract Correctness, Duy Tai Nguyen, Hong Long Pham, Jun Sun, Quang Loc Le

Research Collection School Of Computing and Information Systems

In this work, we experiment an idealistic approach for smart contract correctness verification and enforcement, based on the assumption that developers are either desired or required to provide a correctness specification due to the importance of smart contracts and the fact that they are immutable after deployment. We design a static verification system with a specification language which supports fully compositional verification (with the help of function specifications, contract invariants, loop invariants and call invariants). Our approach has been implemented in a tool named iContract which automatically proves the correctness of a smart contract statically or checks the unverified part …


Multi-Representation Variational Autoencoder Via Iterative Latent Attention And Implicit Differentiation, Nhu Thuat Tran, Hady Wirawan Lauw Oct 2023

Multi-Representation Variational Autoencoder Via Iterative Latent Attention And Implicit Differentiation, Nhu Thuat Tran, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Variational Autoencoder (VAE) offers a non-linear probabilistic modeling of user's preferences. While it has achieved remarkable performance at collaborative filtering, it typically samples a single vector for representing user's preferences, which may be insufficient to capture the user's diverse interests. Existing solutions extend VAE to model multiple interests of users by resorting a variant of self-attentive method, i.e., employing prototypes to group items into clusters, each capturing one topic of user's interests. Despite showing improvements, the current design could be more effective since prototypes are randomly initialized and shared across users, resulting in uninformative and non-personalized clusters.To fill the gap, …


Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji Oct 2023

Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji

Research Collection School Of Computing and Information Systems

Though reinforcement learning (RL) has shown an outstanding capability for solving complex computational problems, most RL algorithms lack an explicit method that would allow learning from contextual information. On the other hand, humans often use context to identify patterns and relations among elements in the environment, along with how to avoid making wrong actions. However, what may seem like an obviously wrong decision from a human perspective could take hundreds of steps for an RL agent to learn to avoid. This article proposes a framework for discrete environments called Iota explicit context representation (IECR). The framework involves representing each state …


Instance-Specific Algorithm Configuration Via Unsupervised Deep Graph Clustering, Wen Song, Yi Liu, Zhiguang Cao, Yaoxin Wu, Qiqiang Li Oct 2023

Instance-Specific Algorithm Configuration Via Unsupervised Deep Graph Clustering, Wen Song, Yi Liu, Zhiguang Cao, Yaoxin Wu, Qiqiang Li

Research Collection School Of Computing and Information Systems

Instance-specific Algorithm Configuration (AC) methods are effective in automatically generating high-quality algorithm parameters for heterogeneous NP-hard problems from multiple sources. However, existing works rely on manually designed features to describe training instances, which are simple numerical attributes and cannot fully capture structural differences. Targeting at Mixed-Integer Programming (MIP) solvers, this paper proposes a novel instances-specific AC method based on end-to-end deep graph clustering. By representing an MIP instance as a bipartite graph, a random walk algorithm is designed to extract raw features with both numerical and structural information from the instance graph. Then an auto-encoder is designed to learn dense …


Toward Intention Discovery For Early Malice Detection In Cryptocurrency, Ling Cheng, Feida Zhu, Yong Wang, Ruicheng Liang, Huiwen Liu Oct 2023

Toward Intention Discovery For Early Malice Detection In Cryptocurrency, Ling Cheng, Feida Zhu, Yong Wang, Ruicheng Liang, Huiwen Liu

Research Collection School Of Computing and Information Systems

Cryptocurrency’s pseudo-anonymous nature makes it vulnerable to malicious activities. However, existing deep learning solutions lack interpretability and only support retrospective analysis of specific malice types. To address these challenges, we propose Intention-Monitor for early malice detection in Bitcoin. Our model, utilizing Decision-Tree based feature Selection and Complement (DT-SC), builds different feature sets for different malice types. The Status Proposal Module (SPM) and hierarchical self-attention predictor provide real-time global status and address label predictions. A survival module determines the stopping point and proposes the status sequence (intention). Our model detects various malicious activities with strong interpretability, outperforming state-of-the-art methods in extensive …


Configuring Timing Parameters To Ensure Execution-Time Opacity In Timed Automata, Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, Jun Sun Oct 2023

Configuring Timing Parameters To Ensure Execution-Time Opacity In Timed Automata, Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, Jun Sun

Research Collection School Of Computing and Information Systems

Timing information leakage occurs whenever an attacker successfully deduces confidential internal information by observing some timed information such as events with timestamps. Timed automata are an extension of finite-state automata with a set of clocks evolving linearly and that can be tested or reset, making this formalism able to reason on systems involving concurrency and timing constraints. In this paper, we summarize a recent line of works using timed automata as the input formalism, in which we assume that the attacker has access (only) to the system execution time. First, we address the following execution-time opacity problem: given a timed …


Quantifying Taxi Drivers' Behaviors With Behavioral Game Theory, Mengyu Ji, Yuhong Xu, Shih-Fen Cheng Sep 2023

Quantifying Taxi Drivers' Behaviors With Behavioral Game Theory, Mengyu Ji, Yuhong Xu, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

With their flexibility and convenience, taxis play a vital role in urban transportation systems. Understanding how human drivers make decisions in a context of uncertainty and competition is crucial for taxi fleets that depend on drivers to provide their services. As part of this paper, we propose modeling taxi drivers’ behaviors based on behavioral game theory. Based on real-world data, we demonstrate that the behavioral game theory model we select is superior to state-of-the-art baselines. These results provide a solid foundation for improving taxi fleet efficiency in the future.


Carbon-Aware Mine Planning With A Novel Multi-Objective Framework, Nurul Asyikeen Binte Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi Sep 2023

Carbon-Aware Mine Planning With A Novel Multi-Objective Framework, Nurul Asyikeen Binte Azhar, Aldy Gunawan, Shih-Fen Cheng, Erwin Leonardi

Research Collection School Of Computing and Information Systems

The logistical complication of long-term mine planning involves deciding the sequential extraction of materials from the mine pit and their subsequent processing steps based on geological, geometrical, and resource constraints. The net present value (NPV) of profit over the mine's lifespan usually forms the sole objective for this problem, which is considered as the NP-hard precedence-constrained production scheduling problem (PCPSP) as well. However, increased pressure for more sustainable and carbon-aware industries also calls for environmental indicators to be considered. In this paper, we enhance the generic PCPSP formulation into a multi-objective optimization (MOO) problem whereby carbon cost forms an additional …


Threshold Attribute-Based Credentials With Redactable Signature, Rui Shi, Huamin Feng, Yang Yang, Feng Yuan, Yingjiu Li, Hwee Hwa Pang, Robert H. Deng Sep 2023

Threshold Attribute-Based Credentials With Redactable Signature, Rui Shi, Huamin Feng, Yang Yang, Feng Yuan, Yingjiu Li, Hwee Hwa Pang, Robert H. Deng

Research Collection School Of Computing and Information Systems

Threshold attribute-based credentials are suitable for decentralized systems such as blockchains as such systems generally assume that authenticity, confidentiality, and availability can still be guaranteed in the presence of a threshold number of dishonest or faulty nodes. Coconut (NDSS'19) was the first selective disclosure attribute-based credentials scheme supporting threshold issuance. However, it does not support threshold tracing of user identities and threshold revocation of user credentials, which is desired for internal governance such as identity management, data auditing, and accountability. The communication and computation complexities of Coconut for verifying credentials are linear in the number of each user's attributes and …


K-St: A Formal Executable Semantics Of The Structured Text Language For Plcs, Kun Wang, Jingyi Wang, Christopher M. Poskitt, Xiangxiang Chen, Jun Sun, Peng Cheng Sep 2023

K-St: A Formal Executable Semantics Of The Structured Text Language For Plcs, Kun Wang, Jingyi Wang, Christopher M. Poskitt, Xiangxiang Chen, Jun Sun, Peng Cheng

Research Collection School Of Computing and Information Systems

Programmable Logic Controllers (PLCs) are responsible for automating process control in many industrial systems (e.g. in manufacturing and public infrastructure), and thus it is critical to ensure that they operate correctly and safely. The majority of PLCs are programmed in languages such as Structured Text (ST). However, a lack of formal semantics makes it difficult to ascertain the correctness of their translators and compilers, which vary from vendor-to-vendor. In this work, we develop K-ST, a formal executable semantics for ST in the K framework. Defined with respect to the IEC 61131-3 standard and PLC vendor manuals, K-ST is a high-level …


Uncertainty-Adjusted Inductive Matrix Completion With Graph Neural Networks, Petr Kasalicky, Antoine Ledent, Rodrigo Alves Sep 2023

Uncertainty-Adjusted Inductive Matrix Completion With Graph Neural Networks, Petr Kasalicky, Antoine Ledent, Rodrigo Alves

Research Collection School Of Computing and Information Systems

We propose a robust recommender systems model which performs matrix completion and a ratings-wise uncertainty estimation jointly. Whilst the prediction module is purely based on an implicit low-rank assumption imposed via nuclear norm regularization, our loss function is augmented by an uncertainty estimation module which learns an anomaly score for each individual rating via a Graph Neural Network: data points deemed more anomalous by the GNN are downregulated in the loss function used to train the low-rank module. The whole model is trained in an end-to-end fashion, allowing the anomaly detection module to tap on the supervised information available in …


Grasp Solution Approach For The E-Waste Collection Problem, Aldy Gunawan, Dang Viet Anh Nguyen, Pham Kien Minh Nguyen, Pieter Vansteenwegen Sep 2023

Grasp Solution Approach For The E-Waste Collection Problem, Aldy Gunawan, Dang Viet Anh Nguyen, Pham Kien Minh Nguyen, Pieter Vansteenwegen

Research Collection School Of Computing and Information Systems

The digital economy has brought significant advancements in electronic devices, increasing convenience and comfort in people’s lives. However, this progress has also led to a shorter life cycle for these devices due to rapid advancements in hardware and software technology. As a result, e-waste collection and recycling have become vital for protecting the environment and people’s health. From the operations research perspective, the e-waste collection problem can be modeled as the Heterogeneous Vehicle Routing Problem with Multiple Time Windows (HVRP-MTW). This study proposes a metaheuristic based on the Greedy Randomized Adaptive Search Procedure complemented by Path Relinking (GRASP-PR) to solve …


Document-Level Relation Extraction Via Separate Relation Representation And Logical Reasoning, Heyan Huang, Changsen Yuan, Qian Liu, Yixin Cao Aug 2023

Document-Level Relation Extraction Via Separate Relation Representation And Logical Reasoning, Heyan Huang, Changsen Yuan, Qian Liu, Yixin Cao

Research Collection School Of Computing and Information Systems

Document-level relation extraction (RE) extends the identification of entity/mentions’ relation from the single sentence to the long document. It is more realistic and poses new challenges to relation representation and reasoning skills. In this article, we propose a novel model, SRLR, using Separate Relation Representation and Logical Reasoning considering the indirect relation representation and complex reasoning of evidence sentence problems. Specifically, we first expand the judgment of relational facts from the entity-level to the mention-level, highlighting fine-grained information to capture the relation representation for the entity pair. Second, we propose a logical reasoning module to identify evidence sentences and conduct …


Learning To Send Reinforcements: Coordinating Multi-Agent Dynamic Police Patrol Dispatching And Rescheduling Via Reinforcement Learning, Waldy Joe, Hoong Chuin Lau Aug 2023

Learning To Send Reinforcements: Coordinating Multi-Agent Dynamic Police Patrol Dispatching And Rescheduling Via Reinforcement Learning, Waldy Joe, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of coordinating multiple agents in a dynamic police patrol scheduling via a Reinforcement Learning (RL) approach. Our approach utilizes Multi-Agent Value Function Approximation (MAVFA) with a rescheduling heuristic to learn dispatching and rescheduling policies jointly. Often, police operations are divided into multiple sectors for more effective and efficient operations. In a dynamic setting, incidents occur throughout the day across different sectors, disrupting initially-planned patrol schedules. To maximize policing effectiveness, police agents from different sectors cooperate by sending reinforcements to support one another in their incident response and even routine patrol. This poses an interesting research challenge …


Survey On Sentiment Analysis: Evolution Of Research Methods And Topics, Jingfeng Cui, Zhaoxia Wang, Seng-Beng Ho, Erik Cambria Aug 2023

Survey On Sentiment Analysis: Evolution Of Research Methods And Topics, Jingfeng Cui, Zhaoxia Wang, Seng-Beng Ho, Erik Cambria

Research Collection School Of Computing and Information Systems

Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword co-occurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates …


Grasp Based Metaheuristic To Solve The Mixed Fleet E-Waste Collection Route Planning Problem, Aldy Gunawan, Dang V.A. Nguyen, Pham K.M. Nguyen, Pieter. Vansteenwegen Aug 2023

Grasp Based Metaheuristic To Solve The Mixed Fleet E-Waste Collection Route Planning Problem, Aldy Gunawan, Dang V.A. Nguyen, Pham K.M. Nguyen, Pieter. Vansteenwegen

Research Collection School Of Computing and Information Systems

The digital economy has brought significant advancements in electronic devices, increasing convenience and comfort in people’s lives. However, this progress has also led to a shorter life cycle for these devices due to rapid advancements in hardware and software technology. As a result, e-waste collection and recycling have become vital for protecting the environment and people’s health. From the operations research perspective, the e-waste collection problem can be modeled as the Heterogeneous Vehicle Routing Problem with Multiple Time Windows (HVRP-MTW). This study proposes a metaheuristic based on the Greedy Randomized Adaptive Search Procedure complemented by Path Relinking (GRASP-PR) to solve …


Estimation Of Recursive Route Choice Models With Incomplete Trip Observations, Tien Mai, The Viet Bui, Quoc Phong Nguyen, Tho V. Le Jul 2023

Estimation Of Recursive Route Choice Models With Incomplete Trip Observations, Tien Mai, The Viet Bui, Quoc Phong Nguyen, Tho V. Le

Research Collection School Of Computing and Information Systems

This work concerns the estimation of recursive route choice models in the situation that the trip observations are incomplete, i.e., there are unconnected links (or nodes) in the observations. A direct approach to handle this issue could be intractable because enumerating all paths between unconnected links (or nodes) in a real network is typically not possible. We exploit an expectation–maximization (EM) method that allows dealing with the missing-data issue by alternatively performing two steps of sampling the missing segments in the observations and solving maximum likelihood estimation problems. Moreover, observing that the EM method could be expensive, we propose a …


Avoiding Starvation Of Arms In Restless Multi-Armed Bandit, Dexun Li, Pradeep Varakantham Jun 2023

Avoiding Starvation Of Arms In Restless Multi-Armed Bandit, Dexun Li, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

Restless multi-armed bandits (RMAB) is a popular framework for optimizing performance with limited resources under uncertainty. It is an extremely useful model for monitoring beneficiaries (arms) and executing timely interventions using health workers (limited resources) to ensure optimal benefit in public health settings. For instance, RMAB has been used to track patients’ health and monitor their adherence in tuberculosis settings, ensure pregnant mothers listen to automated calls about good pregnancy practices, etc. Due to the limited resources, typically certain individuals, communities, or regions are starved of interventions, which can potentially have a significant negative impact on the individual/community in the …


Glocal Energy-Based Learning For Few-Shot Open-Set Recognition, Haoyu Wang, Guansong Pang, Peng Wang, Lei Zhang, Wei Wei, Yanning Zhang Jun 2023

Glocal Energy-Based Learning For Few-Shot Open-Set Recognition, Haoyu Wang, Guansong Pang, Peng Wang, Lei Zhang, Wei Wei, Yanning Zhang

Research Collection School Of Computing and Information Systems

Few-shot open-set recognition (FSOR) is a challenging task of great practical value. It aims to categorize a sample to one of the pre-defined, closed-set classes illustrated by few examples while being able to reject the sample from unknown classes. In this work, we approach the FSOR task by proposing a novel energy-based hybrid model. The model is composed of two branches, where a classification branch learns a metric to classify a sample to one of closedset classes and the energy branch explicitly estimates the open-set probability. To achieve holistic detection of openset samples, our model leverages both class-wise and pixelwise …


Techsumbot: A Stack Overflow Answer Summarization Tool For Technical Query, Chengran Yang, Bowen Xu, Jiakun Liu, David Lo May 2023

Techsumbot: A Stack Overflow Answer Summarization Tool For Technical Query, Chengran Yang, Bowen Xu, Jiakun Liu, David Lo

Research Collection School Of Computing and Information Systems

Stack Overflow is a popular platform for developers to seek solutions to programming-related problems. However, prior studies identified that developers may suffer from the redundant, useless, and incomplete information retrieved by the Stack Overflow search engine. To help developers better utilize the Stack Overflow knowledge, researchers proposed tools to summarize answers to a Stack Overflow question. However, existing tools use hand-craft features to assess the usefulness of each answer sentence and fail to remove semantically redundant information in the result. Besides, existing tools only focus on a certain programming language and cannot retrieve up-to-date new posted knowledge from Stack Overflow. …


Win: Weight-Decay-Integrated Nesterov Acceleration For Adaptive Gradient Algorithms, Pan Zhou, Xingyu Xie, Shuicheng Yan May 2023

Win: Weight-Decay-Integrated Nesterov Acceleration For Adaptive Gradient Algorithms, Pan Zhou, Xingyu Xie, Shuicheng Yan

Research Collection School Of Computing and Information Systems

Training deep networks on large-scale datasets is computationally challenging. In this work, we explore the problem of “how to accelerate adaptive gradient algorithms in a general manner”, and aim to provide practical efficiency-boosting insights. To this end, we propose an effective and general Weight-decay-Integrated Nesterov acceleration (Win) to accelerate adaptive algorithms. Taking AdamW and Adam as examples, we minimize a dynamical loss per iteration which combines the vanilla training loss and a dynamic regularizer inspired by proximal point method (PPM) to improve the convexity of the problem. To introduce Nesterov-alike-acceleration into AdamW and Adam, we respectively use the first- and …