Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 436

Full-Text Articles in Physical Sciences and Mathematics

Harnessing Collective Structure Knowledge In Data Augmentation For Graph Neural Networks, Rongrong Ma, Guansong Pang, Ling Chen Dec 2024

Harnessing Collective Structure Knowledge In Data Augmentation For Graph Neural Networks, Rongrong Ma, Guansong Pang, Ling Chen

Research Collection School Of Computing and Information Systems

Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning. Message passing neural networks, which learn representations through recursively aggregating information from each node and its neighbors, are among the most commonly-used GNNs. However, a wealth of structural information of individual nodes and full graphs is often ignored in such process, which restricts the expressive power of GNNs. Various graph data augmentation methods that enable the message passing with richer structure knowledge have been introduced as one main way to tackle this issue, but they are often focused on individual structure features and difficult to scale up with …


Solving Fractional Differential Equations On A Quantum Computer: A Variational Approach, Fong Yew Leong, Dax Enshan Koh, Jian Feng Kong, Siong Thye Goh, Jun Yong Khoo, Wei Bin Ewe, Hongying Li, Jayne Thompson, Dario Poletti Sep 2024

Solving Fractional Differential Equations On A Quantum Computer: A Variational Approach, Fong Yew Leong, Dax Enshan Koh, Jian Feng Kong, Siong Thye Goh, Jun Yong Khoo, Wei Bin Ewe, Hongying Li, Jayne Thompson, Dario Poletti

Research Collection School Of Computing and Information Systems

We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations. Our method employs an iterable cost function incorporating a linear combination of overlap history states. The proposed algorithm is not only efficient in terms of time complexity but also has lower memory costs compared to classical methods. Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation costs scale economically with the number of time steps. As a proof of concept, we apply our algorithm to solve a range of fractional partial differential equations commonly encountered in engineering …


Unraveling The Dynamics Of Stable And Curious Audiences In Web Systems, Rodrigo Alves, Antoine Ledent, Renato Assunção, Pedro Vaz-De-Melo, Marius Kloft Sep 2024

Unraveling The Dynamics Of Stable And Curious Audiences In Web Systems, Rodrigo Alves, Antoine Ledent, Renato Assunção, Pedro Vaz-De-Melo, Marius Kloft

Research Collection School Of Computing and Information Systems

We propose the Burst-Induced Poisson Process (BPoP), a model designed to analyze time series data such as feeds or search queries. BPoP can distinguish between the slowly-varying regular activity of a stable audience and the bursty activity of a curious audience, often seen in viral threads. Our model consists of two hidden, interacting processes: a self-feeding process (SFP) that generates bursty behavior related to viral threads, and a non-homogeneous Poisson process (NHPP) with step function intensity that is influenced by the bursts from the SFP. The NHPP models the normal background behavior, driven solely by the overall popularity of the …


Prompt Tuning On Graph-Augmented Low-Resource Text Classification, Zhihao Wen, Yuan Fang Aug 2024

Prompt Tuning On Graph-Augmented Low-Resource Text Classification, Zhihao Wen, Yuan Fang

Research Collection School Of Computing and Information Systems

Text classification is a fundamental problem in information retrieval with many real-world applications, such as predicting the topics of online articles and the categories of e-commerce product descriptions. However, low-resource text classification, with no or few labeled samples, presents a serious concern for supervised learning. Meanwhile, many text data are inherently grounded on a network structure, such as a hyperlink/citation network for online articles, and a user-item purchase network for e-commerce products. These graph structures capture rich semantic relationships, which can potentially augment low-resource text classification. In this paper, we propose a novel model called Graph-Grounded Pre-training and Prompting (G2P2) …


Path-Choice-Constrained Bus Bridging Design Under Urban Rail Transit Disruptions, Yiyang Zhu, Jian Gang Jin, Hai Wang Aug 2024

Path-Choice-Constrained Bus Bridging Design Under Urban Rail Transit Disruptions, Yiyang Zhu, Jian Gang Jin, Hai Wang

Research Collection School Of Computing and Information Systems

Although urban rail transit systems play a crucial role in urban mobility, they frequently suffer from unexpected disruptions due to power loss, severe weather, equipment failure, and other factors that cause significant disruptions in passenger travel and, in turn, socioeconomic losses. To alleviate the inconvenience of affected passengers, bus bridging services are often provided when rail service has been suspended. Prior research has yielded various methodologies for effective bus bridging services; however, they are mainly based on the strong assumption that passengers must follow predetermined bus bridging routes. Less attention is paid to passengers’ path choice behaviors, which could affect …


Application Of An Improved Harmony Search Algorithm On Electric Vehicle Routing Problems, Vanny Minanda, Yun-Chia Liang, Angela H. L. Chen, Aldy Gunawan Jul 2024

Application Of An Improved Harmony Search Algorithm On Electric Vehicle Routing Problems, Vanny Minanda, Yun-Chia Liang, Angela H. L. Chen, Aldy Gunawan

Research Collection School Of Computing and Information Systems

Electric vehicles (EVs) have gained considerable popularity, driven in part by an increased concern for the impact of automobile emissions on climate change. Electric vehicles (EVs) cover more than just conventional cars and trucks. They also include electric motorcycles, such as those produced by Gogoro, which serve as the primary mode of transportation for food and package delivery services in Taiwan. Consequently, the Electric Vehicle Routing Problem (EVRP) has emerged as an important variation of the Capacitated Vehicle Routing Problem (CVRP). In addition to the CVRP’s constraints, the EVRP requires vehicles to visit a charging station before the battery level …


Adan: Adaptive Nesterov Momentum Algorithm For Faster Optimizing Deep Models, Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Shuicheng Yan Jul 2024

Adan: Adaptive Nesterov Momentum Algorithm For Faster Optimizing Deep Models, Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Shuicheng Yan

Research Collection School Of Computing and Information Systems

In deep learning, different kinds of deep networks typically need different optimizers, which have to be chosen after multiple trials, making the training process inefficient. To relieve this issue and consistently improve the model training speed across deep networks, we propose the ADAptive Nesterov momentum algorithm, Adan for short. Adan first reformulates the vanilla Nesterov acceleration to develop a new Nesterov momentum estimation (NME) method, which avoids the extra overhead of computing gradient at the extrapolation point. Then Adan adopts NME to estimate the gradient's first- and second-order moments in adaptive gradient algorithms for convergence acceleration. Besides, we prove that …


Friendly Sharpness-Aware Minimization, Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, Xiaolin Huang Jun 2024

Friendly Sharpness-Aware Minimization, Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, Xiaolin Huang

Research Collection School Of Computing and Information Systems

Sharpness-Aware Minimization (SAM) has been instrumental in improving deep neural network training by minimizing both training loss and loss sharpness. Despite the practical success, the mechanisms behind SAM’s generalization enhancements remain elusive, limiting its progress in deep learning optimization. In this work, we investigate SAM’s core components for generalization improvement and introduce “Friendly-SAM” (F-SAM) to further enhance SAM’s generalization. Our investigation reveals the key role of batch-specific stochastic gradient noise within the adversarial perturbation, i.e., the current minibatch gradient, which significantly influences SAM’s generalization performance. By decomposing the adversarial perturbation in SAM into full gradient and stochastic gradient noise components, …


An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko May 2024

An Adaptive Large Neighborhood Search For The Multi-Vehicle Profitable Tour Problem With Flexible Compartments And Mandatory Customers, Vincent F. Yu, Nabila Yuraisyah Salsabila, Aldy Gunawan, Anggun Nurfitriani Handoko

Research Collection School Of Computing and Information Systems

The home-refill delivery system is a business model that addresses the concerns of plastic waste and its impact on the environment. It allows customers to pick up their household goods at their doorsteps and refill them into their own containers. However, the difficulty in accessing customers’ locations and product consolidations are undeniable challenges. To overcome these issues, we introduce a new variant of the Profitable Tour Problem, named the multi-vehicle profitable tour problem with flexible compartments and mandatory customers (MVPTPFC-MC). The objective is to maximize the difference between the total collected profit and the traveling cost. We model the proposed …


Knowledge Enhanced Multi-Intent Transformer Network For Recommendation, Ding Zou, Wei Wei, Feida Zhu, Chuanyu Xu, Tao Zhang, Chengfu Huo May 2024

Knowledge Enhanced Multi-Intent Transformer Network For Recommendation, Ding Zou, Wei Wei, Feida Zhu, Chuanyu Xu, Tao Zhang, Chengfu Huo

Research Collection School Of Computing and Information Systems

Incorporating Knowledge Graphs (KGs) into Recommendation has attracted growing attention in industry, due to the great potential of KG in providing abundant supplementary information and interpretability for the underlying models. However, simply integrating KG into recommendation usually brings in negative feedback in industry, mainly due to the ignorance of the following two factors: i) users' multiple intents, which involve diverse nodes in KG. For example, in e-commerce scenarios, users may exhibit preferences for specific styles, brands, or colors. ii) knowledge noise, which is a prevalent issue in Knowledge Enhanced Recommendation (KGR) and even more severe in industry scenarios. The irrelevant …


Algorithms For Canvas-Based Attention Scheduling With Resizing, Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Adbelzaher May 2024

Algorithms For Canvas-Based Attention Scheduling With Resizing, Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Adbelzaher

Research Collection School Of Computing and Information Systems

Canvas-based attention scheduling was recently pro-posed to improve the efficiency of real-time machine perception systems. This framework introduces a notion of focus locales, referring to those areas where the attention of the inference system should “allocate its attention”. Data from these locales (e.g., parts of the input video frames containing objects of interest) are packed together into a smaller canvas frame which is processed by the downstream machine learning algorithm. Compared with processing the entire input data frame, this practice saves resources while maintaining inference quality. Previous work was limited to a simplified solution where the focus locales are quantized …


Reinforcement Nash Equilibrium Solver, Xinrun Wang, Chang Yang, Shuxin Li, Pengdeng Li, Xiao Huang, Hau Chan, Bo An May 2024

Reinforcement Nash Equilibrium Solver, Xinrun Wang, Chang Yang, Shuxin Li, Pengdeng Li, Xiao Huang, Hau Chan, Bo An

Research Collection School Of Computing and Information Systems

Nash Equilibrium (NE) is the canonical solution concept of game theory, which provides an elegant tool to understand the rationalities. Computing NE in two- or multi-player general-sum games is PPAD-Complete. Therefore, in this work, we propose REinforcement Nash Equilibrium Solver (RENES), which trains a single policy to modify the games with different sizes and applies the solvers on the modified games where the obtained solution is evaluated on the original games. Specifically, our contributions are threefold. i) We represent the games as ��-rank response graphs and leverage graph neural network (GNN) to handle the games with different sizes as inputs; …


Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin May 2024

Quantum Machine Learning For Credit Scoring, Nikolaos Schetakis, Davit Aghamalyan, Micheael Boguslavsky, Agnieszka Rees, Marc Rakotomalala, Paul Robert Griffin

Research Collection School Of Computing and Information Systems

This study investigates the integration of quantum circuits with classical neural networks for enhancing credit scoring for small- and medium-sized enterprises (SMEs). We introduce a hybrid quantum–classical model, focusing on the synergy between quantum and classical rather than comparing the performance of separate quantum and classical models. Our model incorporates a quantum layer into a traditional neural network, achieving notable reductions in training time. We apply this innovative framework to a binary classification task with a proprietary real-world classical credit default dataset for SMEs in Singapore. The results indicate that our hybrid model achieves efficient training, requiring significantly fewer epochs …


Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng Apr 2024

Towards Low-Resource Rumor Detection: Unified Contrastive Transfer With Propagation Structure, Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang, Mingfei Cheng

Research Collection School Of Computing and Information Systems

The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a simple yet effective framework with unified contrastive transfer learning, to detect rumors by adapting the features learned from well-resourced rumor data to that …


Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao Mar 2024

Screening Through A Broad Pool: Towards Better Diversity For Lexically Constrained Text Generation, Changsen Yuan, Heyan Huang, Yixin Cao, Qianwen Cao

Research Collection School Of Computing and Information Systems

Lexically constrained text generation (CTG) is to generate text that contains given constrained keywords. However, the text diversity of existing models is still unsatisfactory. In this paper, we propose a lightweight dynamic refinement strategy that aims at increasing the randomness of inference to improve generation richness and diversity while maintaining a high level of fluidity and integrity. Our basic idea is to enlarge the number and length of candidate sentences in each iteration, and choose the best for subsequent refinement. On the one hand, different from previous works, which carefully insert one token between two words per action, we insert …


Win: Weight-Decay-Integrated Nesterov Acceleration For Faster Network Training, Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan Mar 2024

Win: Weight-Decay-Integrated Nesterov Acceleration For Faster Network Training, Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan

Research Collection School Of Computing and Information Systems

Training deep networks on large-scale datasets is computationally challenging. This work explores the problem of “how to accelerate adaptive gradient algorithms in a general manner", and proposes an effective Weight-decay-Integrated Nesterov acceleration (Win) to accelerate adaptive algorithms. Taking AdamW and Adam as examples, per iteration, we construct a dynamical loss that combines the vanilla training loss and a dynamic regularizer inspired by proximal point method, and respectively minimize the first- and second-order Taylor approximations of dynamical loss to update variable. This yields our Win acceleration that uses a conservative step and an aggressive step to update, and linearly combines these …


Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu Mar 2024

Conditional Neural Heuristic For Multiobjective Vehicle Routing Problems, Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, Guohua Wu

Research Collection School Of Computing and Information Systems

Existing neural heuristics for multiobjective vehicle routing problems (MOVRPs) are primarily conditioned on instance context, which failed to appropriately exploit preference and problem size, thus holding back the performance. To thoroughly unleash the potential, we propose a novel conditional neural heuristic (CNH) that fully leverages the instance context, preference, and size with an encoder–decoder structured policy network. Particularly, in our CNH, we design a dual-attention-based encoder to relate preferences and instance contexts, so as to better capture their joint effect on approximating the exact Pareto front (PF). We also design a size-aware decoder based on the sinusoidal encoding to explicitly …


Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy Hoang, Mai Anh Tien, Pradeep Varakantham Feb 2024

Imitate The Good And Avoid The Bad: An Incremental Approach To Safe Reinforcement Learning, Minh Huy Hoang, Mai Anh Tien, Pradeep Varakantham

Research Collection School Of Computing and Information Systems

A popular framework for enforcing safe actions in Reinforcement Learning (RL) is Constrained RL, where trajectory based constraints on expected cost (or other cost measures) are employed to enforce safety and more importantly these constraints are enforced while maximizing expected reward. Most recent approaches for solving Constrained RL convert the trajectory based cost constraint into a surrogate problem that can be solved using minor modifications to RL methods. A key drawback with such approaches is an over or underestimation of the cost constraint at each state. Therefore, we provide an approach that does not modify the trajectory based cost constraint …


Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft Feb 2024

Recommendations With Minimum Exposure Guarantees: A Post-Processing Framework, Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo L. T. Santos, Marius Kloft

Research Collection School Of Computing and Information Systems

Relevance-based ranking is a popular ingredient in recommenders, but it frequently struggles to meet fairness criteria because social and cultural norms may favor some item groups over others. For instance, some items might receive lower ratings due to some sort of bias (e.g. gender bias). A fair ranking should balance the exposure of items from advantaged and disadvantaged groups. To this end, we propose a novel post-processing framework to produce fair, exposure-aware recommendations. Our approach is based on an integer linear programming model maximizing the expected utility while satisfying a minimum exposure constraint. The model has fewer variables than previous …


Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin Miao, Yutao Yang, Xinghua Li, Linfeng Wei, Zhiquan Liu, Robert H. Deng Jan 2024

Efficient Privacy-Preserving Spatial Data Query In Cloud Computing, Yinbin Miao, Yutao Yang, Xinghua Li, Linfeng Wei, Zhiquan Liu, Robert H. Deng

Research Collection School Of Computing and Information Systems

With the rapid development of geographic location technology and the explosive growth of data, a large amount of spatial data is outsourced to the cloud server for reducing the local high storage and computing burdens, but at the same time causes security issues. Thus, extensive privacy-preserving spatial data query schemes have been proposed. Most of the existing schemes use Asymmetric Scalar-Product-Preserving Encryption (ASPE) to encrypt data, but ASPE has proven to be insecure against known plaintext attack. And the existing schemes require users to provide more information about query range and thus generate a large amount of ciphertexts, which causes …


Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao Mao, Guohua Wu, Mingfeng Fan, Zhiguang Cao, Witold Pedrycz Jan 2024

Dl-Drl: A Double-Level Deep Reinforcement Learning Approach For Large-Scale Task Scheduling Of Multi-Uav, Xiao Mao, Guohua Wu, Mingfeng Fan, Zhiguang Cao, Witold Pedrycz

Research Collection School Of Computing and Information Systems

Exploiting unmanned aerial vehicles (UAVs) to execute tasks is gaining growing popularity recently. To address the underlying task scheduling problem, conventional exact and heuristic algorithms encounter challenges such as rapidly increasing computation time and heavy reliance on domain knowledge, particularly when dealing with large-scale problems. The deep reinforcement learning (DRL) based methods that learn useful patterns from massive data demonstrate notable advantages. However, their decision space will become prohibitively huge as the problem scales up, thus deteriorating the computation efficiency. To alleviate this issue, we propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework …


Active Discovering New Slots For Task-Oriented Conversation, Yuxia Wu, Tianhao Dai, Zhedong Zheng, Lizi Liao Jan 2024

Active Discovering New Slots For Task-Oriented Conversation, Yuxia Wu, Tianhao Dai, Zhedong Zheng, Lizi Liao

Research Collection School Of Computing and Information Systems

Existing task-oriented conversational systems heavily rely on domain ontologies with pre-defined slots and candidate values. In practical settings, these prerequisites are hard to meet, due to the emerging new user requirements and ever-changing scenarios. To mitigate these issues for better interaction performance, there are efforts working towards detecting out-of-vocabulary values or discovering new slots under unsupervised or semi-supervised learning paradigms. However, overemphasizing on the conversation data patterns alone induces these methods to yield noisy and arbitrary slot results. To facilitate the pragmatic utility, real-world systems tend to provide a stringent amount of human labeling quota, which offers an authoritative way …


Wakening Past Concepts Without Past Data: Class-Incremental Learning From Online Placebos, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun Jan 2024

Wakening Past Concepts Without Past Data: Class-Incremental Learning From Online Placebos, Yaoyao Liu, Yingying Li, Bernt Schiele, Qianru Sun

Research Collection School Of Computing and Information Systems

Not forgetting old class knowledge is a key challenge for class-incremental learning (CIL) when the model continuously adapts to new classes. A common technique to address this is knowledge distillation (KD), which penalizes prediction inconsistencies between old and new models. Such prediction is made with almost new class data, as old class data is extremely scarce due to the strict memory limitation in CIL. In this paper, we take a deep dive into KD losses and find that "using new class data for KD"not only hinders the model adaption (for learning new classes) but also results in low efficiency for …


Continual Learning, Fast And Slow, Quang Anh Pham, Chenghao Liu, Steven C. H. Hoi Jan 2024

Continual Learning, Fast And Slow, Quang Anh Pham, Chenghao Liu, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

According to the Complementary Learning Systems (CLS) theory (McClelland et al. 1995) in neuroscience, humans do effective continual learning through two complementary systems: a fast learning system centered on the hippocampus for rapid learning of the specifics, individual experiences; and a slow learning system located in the neocortex for the gradual acquisition of structured knowledge about the environment. Motivated by this theory, we propose DualNets (for Dual Networks), a general continual learning framework comprising a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for representation learning of task-agnostic general representation via …


Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao Jan 2024

Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao

Research Collection School Of Computing and Information Systems

This paper studies the problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely. Different from almost all canonical sota solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, segac offers the following appealing characteristics. segac updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained segac policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art sota algorithms in simulations across various transportation networks. We also successfully deploy segac …


Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo Dec 2023

Robust Test Selection For Deep Neural Networks, Weifeng Sun, Meng Yan, Zhongxin Liu, David Lo

Research Collection School Of Computing and Information Systems

Deep Neural Networks (DNNs) have been widely used in various domains, such as computer vision and software engineering. Although many DNNs have been deployed to assist various tasks in the real world, similar to traditional software, they also suffer from defects that may lead to severe outcomes. DNN testing is one of the most widely used methods to ensure the quality of DNNs. Such method needs rich test inputs with oracle information (expected output) to reveal the incorrect behaviors of a DNN model. However, manually labeling all the collected test inputs is a labor-intensive task, which delays the quality assurance …


Offline Rl With Discrete Proxy Representations For Generalizability In Pomdps, Pengjie Gu, Xinyu Cai, Dong Xing, Xinrun Wang, Mengchen Zhao, Bo An Dec 2023

Offline Rl With Discrete Proxy Representations For Generalizability In Pomdps, Pengjie Gu, Xinyu Cai, Dong Xing, Xinrun Wang, Mengchen Zhao, Bo An

Research Collection School Of Computing and Information Systems

Offline Reinforcement Learning (RL) has demonstrated promising results in various applications by learning policies from previously collected datasets, reducing the need for online exploration and interactions. However, real-world scenarios usually involve partial observability, which brings crucial challenges of the deployment of offline RL methods: i) the policy trained on data with full observability is not robust against the masked observations during execution, and ii) the information of which parts of observations are masked is usually unknown during training. In order to address these challenges, we present Offline RL with DiscrEte pRoxy representations (ORDER), a probabilistic framework which leverages novel state …


C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia Dec 2023

C³: Code Clone-Based Identification Of Duplicated Components, Yanming Yang, Ying Zou, Xing Hu, David Lo, Chao Ni, John C. Grundy, Xin: Xia

Research Collection School Of Computing and Information Systems

Reinventing the wheel is a detrimental programming practice in software development that frequently results in the introduction of duplicated components. This practice not only leads to increased maintenance and labor costs but also poses a higher risk of propagating bugs throughout the system. Despite numerous issues introduced by duplicated components in software, the identification of component-level clones remains a significant challenge that existing studies struggle to effectively tackle. Specifically, existing methods face two primary limitations that are challenging to overcome: 1) Measuring the similarity between different components presents a challenge due to the significant size differences among them; 2) Identifying …


Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin Dec 2023

Learning Program Semantics For Vulnerability Detection Via Vulnerability-Specific Inter-Procedural Slicing, Bozhi Wu, Shangqing Liu, Xiao Yang, Zhiming Li, Jun Sun, Shang-Wei Lin

Research Collection School Of Computing and Information Systems

Learning-based approaches that learn code representations for software vulnerability detection have been proven to produce inspiring results. However, they still fail to capture complete and precise vulnerability semantics for code representations. To address the limitations, in this work, we propose a learning-based approach namely SnapVuln, which first utilizes multiple vulnerability-specific inter-procedural slicing algorithms to capture vulnerability semantics of various types and then employs a Gated Graph Neural Network (GGNN) with an attention mechanism to learn vulnerability semantics. We compare SnapVuln with state-of-the-art learning-based approaches on two public datasets, and confirm that SnapVuln outperforms them. We further perform an ablation study …


Controlling Type Confounding In Ad Hoc Teamwork With Instance-Wise Teammate Feedback Rectification, Dong Xing, Pengjie Gu, Qian Zheng, Xinrun Wang, Shanqi Liu, Longtao Zheng, Bo An, Gang Pan Dec 2023

Controlling Type Confounding In Ad Hoc Teamwork With Instance-Wise Teammate Feedback Rectification, Dong Xing, Pengjie Gu, Qian Zheng, Xinrun Wang, Shanqi Liu, Longtao Zheng, Bo An, Gang Pan

Research Collection School Of Computing and Information Systems

Ad hoc teamwork requires an agent to cooperate with unknown teammates without prior coordination. Many works propose to abstract teammate instances into high-level representation of types and then pre-train the best response for each type. However, most of them do not consider the distribution of teammate instances within a type. This could expose the agent to the hidden risk of type confounding. In the worst case, the best response for an abstract teammate type could be the worst response for all specific instances of that type. This work addresses the issue from the lens of causal inference. We first theoretically …